Research Article

A Chaotic Disturbance Wolf Pack Algorithm for Solving Ultrahigh-Dimensional Complex Functions

Table 3

The results of the first experiment were compared.

DimFunIndexPSOABCAFSAWPAOWPACWPACDWPA

2EasomBEST−1.001.00111.001.001.00
MEAN1.0010.72541.001.001.001.00
WORST1.0018.08e − 051.000.990.991.00
STD5.57e − 0700.436.25e − 072.58e − 052.71e − 051.80e − 07
SR/%100%100%0100%35%65%100%

2SphereBEST7.8850.204446.41e − 174.10e − 172.21e − 101.67e −  18
MEAN10.3058.06468.787.17e −  168.24e − 162.14e − 097.19e − 15
WORST12.2466.75488.936.53e − 152.79e − 151.74e − 084.53e −  16
STD1.364.4712.991.43e − 158.24e − 143.78e − 091.27e −  15
SR/%000100%100%100%100%

2MatyasBEST2.53e − 101.47e − 067.29e − 101.50e − 177.67e − 261.22e − 159.78e − 25
MEAN1.16e − 089.91e − 054.08e − 72.46e − 078.38e − 201.66e − 73.46e −  20
WORST5.38e − 084.16e − 047.07e069.86e − 075.55e − 191.66e − 62.54e −  19
STD1.56e − 101.06e − 041.57e − 062.51e − 071.52e − 194.17e − 077.50e −  20
SR/%100%15%100%100%100%100%100%

2BoothBEST7.12e − 091.50 e −  131.50e − 081.61e − 081.48e − 071.22e − 071.46e − 09
MEAN3.67e − 074.82 e −  113.39e − 063.07e − 072.13e − 062.71e − 071.44e − 07
WORST1.53e − 062.19 e −  102.06e − 052.53e − 065.80e − 061.30e − 066.25e − 07
STD3.57e − 075.66 e −  114.65e − 065.92e − 071.75e − 063.74e − 071.58e − 07
SR/%100%100%95%100%100%100%100%

2EggcrateBEST4.56e − 087.33e − 217.66e − 063.53e − 211.77e − 216.83e − 151.28e −  22
MEAN4.61e − 062.55e − 181.909.25e − 199.31e − 171.37e − 044.21e −  20
WORST2.08e − 051.20e − 179.486.71e − 181.05e − 150.0013.36e −  20
STD5.31e − 062.89e − 183.891.64e − 182.48e − 162.48e − 048.49e −  20
SR/%100%100%5%100%100%40%100%

30StepBEST001995920070
MEAN0.434.252.39e +050034.450
WORST216279999041380
STD0.554.011.90e +0401.0129.220
SR/%60%5%0100%50%0100%

100SumsquaresBEST334.296.35e +041.51e +042.69e − 131.09e − 128.38e − 081.83e −  14
MEAN402.341.02e +051.61e +043.53e − 122.68e − 128.48e − 071.24e −  13
WORST518.251.17e +051.73e +041.47e − 112.49e − 112.27e − 065.40e −  13
STD44.881.21e +04588.524.12e − 125.44e − 126.76e − 071.29e −  13
SR/%000100%100%100%100%

100QuadricBEST11.821.66e +044.99e − 051.40e − 121.02e − 125.33e − 071.81e −  13
MEAN19.442.42e +040.022.90e − 111.90e − 113.92e − 061.98e −  12
WORST30.103.03e +040.181.38e − 109.85e − 112.04e − 051.82e −  11
STD4.373.70e +030.053.88e − 112.80e − 114.59e − 064.03e −  13
SR/%000100%100%90%100%

100GriewankBEST0.042988.59e +031.84e − 131.31e − 135.52e − 098.50e −  14
MEAN0.06426.219.32e +030.041.59e − 122.34e − 081.72e −  13
WORST0.09513.551.00e +040.827.11e − 127.30e − 081.00e −  11
STD0.0160.073810.182.37e − 121.90e − 082.64e −  13
SR/%00095%100%100%100%

100AckleyBEST2.2319.701.59e +166.94e − 086.45e − 083.62e − 053.68e −  09
MEAN2.5019.918.01e +142.12e − 071.43e − 071.511.61e −  09
WORST2.7320.048.88e +086.28e − 076.20e − 073.593.76e −  09
STD0.110.073.56e +151.51e − 071.46e − 071.449.36e −  09
SR/%00096%100%0100%