Research Article
Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China
Table 1
RJ/CRB International Commodity Futures Index: the goodness of fit and in-sample and out-of-sample prediction accuracy at different lag orders.
| Model | Index | Lag order | 13 | 20 | 25 | 30 | 35 | 40 |
| Beta-MIDAS | R2 | 0.8629 | 0.8629 | 0.8629 | 0.8630 | 0.8675 | 0.8680 | RMSE | 0.6430 | 0.6407 | 0.6430 | 0.6445 | 0.6300 | 0.6359 | MSFE | 0.4134 | 0.4105 | 0.4134 | 0.4154 | 0.3969 | 0.4044 | DMSFE | 0.1044 | 0.1041 | 0.1044 | 0.1046 | 0.1026 | 0.1044 |
| Beta-nonzero-MIDAS | R2 | 0.8628 | 0.8631 | 0.8633 | 0.8633 | 0.8677 | 0.8675 | RMSE | 0.6382 | 0.6408 | 0.6421 | 0.6458 | 0.6331 | 0.6327 | MSFE | 0.4073 | 0.4107 | 0.4123 | 0.4171 | 0.4009 | 0.4003 | DMSFE | 0.1032 | 0.1042 | 0.1047 | 0.1053 | 0.1034 | 0.1031 |
| Exp Almon-MIDAS | R2 | 0.8629 | 0.8629 | 0.8629 | 0.8629 | 0.8675 | 0.8675 | RMSE | 0.6429 | 0.6429 | 0.6429 | 0.6429 | 0.6324 | 0.6324 | MSFE | 0.4133 | 0.4133 | 0.4133 | 0.4133 | 0.4000 | 0.4000 | DMSFE | 0.1044 | 0.1044 | 0.1044 | 0.1044 | 0.1031 | 0.1031 |
| U-MIDAS | R2 | 0.8908 | 0.8937 | 0.9011 | 0.9038 | 0.9120 | 0.9201 | RMSE | 0.7368 | 0.7863 | 0.8514 | 0.8703 | 0.8488 | 0.8936 | MSFE | 0.5429 | 0.6183 | 0.7249 | 0.7575 | 0.7204 | 0.7986 | DMSFE | 0.1336 | 0.1412 | 0.1661 | 0.1773 | 0.1826 | 0.1799 |
| Stepfun-MIDAS | R2 | 0.8796 | 0.8803 | 0.8858 | 0.8852 | 0.8897 | 0.8916 | RMSE | 0.7100 | 0.7160 | 0.7483 | 0.7358 | 0.7004 | 0.7181 | MSFE | 0.5041 | 0.5127 | 0.5600 | 0.5414 | 0.4906 | 0.5156 | DMSFE | 0.1370 | 0.1348 | 0.1463 | 0.1459 | 0.1470 | 0.1487 |
| Almon-MIDAS | R2 | 0.8716 | 0.8682 | 0.8717 | 0.8695 | 0.8751 | 0.8750 | RMSE | 0.5046 | 0.5868 | 0.7108 | 0.6905 | 0.6276 | 0.5997 | MSFE | 0.2546 | 0.3443 | 0.5052 | 0.4768 | 0.3939 | 0.3597 | DMSFE | 0.0868 | 0.0942 | 0.1342 | 0.1319 | 0.1216 | 0.1068 |
|
|