Research Article
Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China
Table 2
Average daily coal consumption of six power plants: the goodness of fit and in-sample and out-of-sample prediction accuracy at different lag orders.
| Model | Index | Lag order | 15 | 22 | 25 | 30 | 35 | 40 |
| Beta-MIDAS | R2 | 0.8727 | 0.8728 | 0.8728 | 0.8685 | 0.8709 | 0.8709 | RMSE | 0.5778 | 0.5829 | 0.5831 | 0.5444 | 0.5451 | 0.5451 | MSFE | 0.3339 | 0.3398 | 0.3400 | 0.2964 | 0.2972 | 0.2972 | DMSFE | 0.0947 | 0.0946 | 0.0946 | 0.0834 | 0.0840 | 0.0840 |
| Beta-nonzero-MIDAS | R2 | 0.8619 | 0.8599 | 0.8598 | 0.8598 | 0.8655 | 0.8652 | RMSE | 0.5691 | 0.5496 | 0.5439 | 0.5396 | 0.5373 | 0.5412 | MSFE | 0.3239 | 0.3021 | 0.2959 | 0.2912 | 0.2887 | 0.2929 | DMSFE | 0.0972 | 0.0888 | 0.0865 | 0.0852 | 0.0858 | 0.0867 |
| Exp Almon-MIDAS | R2 | 0.8728 | 0.8728 | 0.8728 | 0.8728 | 0.8740 | 0.8740 | RMSE | 0.5824 | 0.5824 | 0.5824 | 0.5824 | 0.5745 | 0.5745 | MSFE | 0.3392 | 0.3392 | 0.3392 | 0.3392 | 0.3301 | 0.3301 | DMSFE | 0.0945 | 0.0945 | 0.0945 | 0.0945 | 0.0924 | 0.0924 |
| U-MIDAS | R2 | 0.9034 | 0.9066 | 0.9093 | 0.9177 | 0.9302 | 0.9325 | RMSE | 0.6375 | 0.5952 | 0.6266 | 0.5850 | 0.5734 | 0.5657 | MSFE | 0.4064 | 0.3543 | 0.3927 | 0.3422 | 0.3288 | 0.3200 | DMSFE | 0.1001 | 0.0936 | 0.1000 | 0.0506 | 0.0564 | 0.0700 |
| Stepfun-MIDAS | R2 | 0.8879 | 0.8896 | 0.8899 | 0.8898 | 0.9065 | 0.9059 | RMSE | 0.5181 | 0.5055 | 0.5217 | 0.5231 | 0.5237 | 0.5171 | MSFE | 0.2684 | 0.2555 | 0.2722 | 0.2736 | 0.2743 | 0.2674 | DMSFE | 0.0806 | 0.0793 | 0.0858 | 0.0828 | 0.0790 | 0.0758 |
| Almon-MIDAS | R2 | 0.8862 | 0.8874 | 0.8873 | 0.8873 | 0.8987 | 0.8972 | RMSE | 0.5168 | 0.5187 | 0.5202 | 0.5234 | 0.5184 | 0.5295 | MSFE | 0.2671 | 0.2690 | 0.2706 | 0.2740 | 0.2688 | 0.2804 | DMSFE | 0.0756 | 0.0791 | 0.0810 | 0.0758 | 0.0606 | 0.0772 |
|
|