Research Article

Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China

Table 2

Average daily coal consumption of six power plants: the goodness of fit and in-sample and out-of-sample prediction accuracy at different lag orders.

ModelIndexLag order
152225303540

Beta-MIDASR20.87270.87280.87280.86850.87090.8709
RMSE0.57780.58290.58310.54440.54510.5451
MSFE0.33390.33980.34000.29640.29720.2972
DMSFE0.09470.09460.09460.08340.08400.0840

Beta-nonzero-MIDASR20.86190.85990.85980.85980.86550.8652
RMSE0.56910.54960.54390.53960.53730.5412
MSFE0.32390.30210.29590.29120.28870.2929
DMSFE0.09720.08880.08650.08520.08580.0867

Exp Almon-MIDASR20.87280.87280.87280.87280.87400.8740
RMSE0.58240.58240.58240.58240.57450.5745
MSFE0.33920.33920.33920.33920.33010.3301
DMSFE0.09450.09450.09450.09450.09240.0924

U-MIDASR20.90340.90660.90930.91770.93020.9325
RMSE0.63750.59520.62660.58500.57340.5657
MSFE0.40640.35430.39270.34220.32880.3200
DMSFE0.10010.09360.10000.05060.05640.0700

Stepfun-MIDASR20.88790.88960.88990.88980.90650.9059
RMSE0.51810.50550.52170.52310.52370.5171
MSFE0.26840.25550.27220.27360.27430.2674
DMSFE0.08060.07930.08580.08280.07900.0758

Almon-MIDASR20.88620.88740.88730.88730.89870.8972
RMSE0.51680.51870.52020.52340.51840.5295
MSFE0.26710.26900.27060.27400.26880.2804
DMSFE0.07560.07910.08100.07580.06060.0772