Research Article

Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China

Table 3

Nanhua futures commodity index: the goodness of fit and in-sample and out-of-sample prediction accuracy at different lag orders.

ModelIndexLag order
152023253035

Beta-MIDASR20.86530.86520.86510.86500.86490.8691
RMSE0.49990.50020.50030.50040.50060.5059
MSFE0.24990.25020.25030.25040.25060.2560
DMSFE0.07750.07750.07740.07740.07730.0779

Beta-nonzero-MIDASR20.86440.86410.86410.86400.86410.8685
RMSE0.50200.50240.50250.50260.50190.5079
MSFE0.25200.25240.25250.25260.25190.2579
DMSFE0.07710.07670.07650.07630.07590.0766

Exp Almon-MIDASR20.86570.86570.86570.86570.86570.8699
RMSE0.49860.49860.49860.49860.49860.5038
MSFE0.24860.24860.24860.24860.24860.2538
DMSFE0.07770.07770.07770.07770.07770.0782

U-MIDASR20.88720.89410.89440.89550.90090.9086
RMSE0.51720.55810.56800.58510.61800.6347
MSFE0.26750.31150.32270.34240.38200.4029
DMSFE0.08780.09120.09590.10470.11840.1344

Stepfun-MIDASR20.87090.87580.87610.87620.88160.8902
RMSE0.51300.54910.53950.54860.56250.5866
MSFE0.26310.30150.29110.30090.31650.3441
DMSFE0.08660.09480.09090.09610.09250.1073

Almon-MIDASR20.86940.86830.86850.86880.86960.8723
RMSE0.47850.47360.47150.47750.58030.4907
MSFE0.22900.22430.22230.22800.33680.2408
DMSFE0.08350.08950.08760.08350.09190.0808