Research Article
Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China
Table 3
Nanhua futures commodity index: the goodness of fit and in-sample and out-of-sample prediction accuracy at different lag orders.
| Model | Index | Lag order | 15 | 20 | 23 | 25 | 30 | 35 |
| Beta-MIDAS | R2 | 0.8653 | 0.8652 | 0.8651 | 0.8650 | 0.8649 | 0.8691 | RMSE | 0.4999 | 0.5002 | 0.5003 | 0.5004 | 0.5006 | 0.5059 | MSFE | 0.2499 | 0.2502 | 0.2503 | 0.2504 | 0.2506 | 0.2560 | DMSFE | 0.0775 | 0.0775 | 0.0774 | 0.0774 | 0.0773 | 0.0779 |
| Beta-nonzero-MIDAS | R2 | 0.8644 | 0.8641 | 0.8641 | 0.8640 | 0.8641 | 0.8685 | RMSE | 0.5020 | 0.5024 | 0.5025 | 0.5026 | 0.5019 | 0.5079 | MSFE | 0.2520 | 0.2524 | 0.2525 | 0.2526 | 0.2519 | 0.2579 | DMSFE | 0.0771 | 0.0767 | 0.0765 | 0.0763 | 0.0759 | 0.0766 |
| Exp Almon-MIDAS | R2 | 0.8657 | 0.8657 | 0.8657 | 0.8657 | 0.8657 | 0.8699 | RMSE | 0.4986 | 0.4986 | 0.4986 | 0.4986 | 0.4986 | 0.5038 | MSFE | 0.2486 | 0.2486 | 0.2486 | 0.2486 | 0.2486 | 0.2538 | DMSFE | 0.0777 | 0.0777 | 0.0777 | 0.0777 | 0.0777 | 0.0782 |
| U-MIDAS | R2 | 0.8872 | 0.8941 | 0.8944 | 0.8955 | 0.9009 | 0.9086 | RMSE | 0.5172 | 0.5581 | 0.5680 | 0.5851 | 0.6180 | 0.6347 | MSFE | 0.2675 | 0.3115 | 0.3227 | 0.3424 | 0.3820 | 0.4029 | DMSFE | 0.0878 | 0.0912 | 0.0959 | 0.1047 | 0.1184 | 0.1344 |
| Stepfun-MIDAS | R2 | 0.8709 | 0.8758 | 0.8761 | 0.8762 | 0.8816 | 0.8902 | RMSE | 0.5130 | 0.5491 | 0.5395 | 0.5486 | 0.5625 | 0.5866 | MSFE | 0.2631 | 0.3015 | 0.2911 | 0.3009 | 0.3165 | 0.3441 | DMSFE | 0.0866 | 0.0948 | 0.0909 | 0.0961 | 0.0925 | 0.1073 |
| Almon-MIDAS | R2 | 0.8694 | 0.8683 | 0.8685 | 0.8688 | 0.8696 | 0.8723 | RMSE | 0.4785 | 0.4736 | 0.4715 | 0.4775 | 0.5803 | 0.4907 | MSFE | 0.2290 | 0.2243 | 0.2223 | 0.2280 | 0.3368 | 0.2408 | DMSFE | 0.0835 | 0.0895 | 0.0876 | 0.0835 | 0.0919 | 0.0808 |
|
|