Research Article
Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China
Table 4
Exchange rate: the goodness of fit and in-sample and out-of-sample prediction accuracy at different lag orders.
| Model | Index | Lag order | 15 | 20 | 25 | 30 | 35 | 40 |
| Beta-MIDAS | R2 | 0.8617 | 0.8621 | 0.8619 | 0.8619 | 0.8664 | 0.8668 | RMSE | 0.4903 | 0.4863 | 0.4873 | 0.4877 | 0.5004 | 0.4938 | MSFE | 0.2404 | 0.2364 | 0.2375 | 0.2378 | 0.2504 | 0.2439 | DMSFE | 0.0770 | 0.0778 | 0.0779 | 0.0777 | 0.0797 | 0.0793 |
| Beta-nonzero-MIDAS | R2 | 0.8616 | 0.8617 | 0.8617 | 0.8617 | 0.8663 | 0.8664 | RMSE | 0.4938 | 0.4916 | 0.4907 | 0.4896 | 0.5018 | 0.5007 | MSFE | 0.2438 | 0.2417 | 0.2408 | 0.2397 | 0.2518 | 0.2507 | DMSFE | 0.0781 | 0.0780 | 0.0779 | 0.0778 | 0.0798 | 0.0798 |
| Exp Almon-MIDAS | R2 | 0.8618 | 0.8620 | 0.8619 | 0.8620 | 0.8666 | 0.8668 | RMSE | 0.4887 | 0.4875 | 0.4871 | 0.4837 | 0.4972 | 0.4929 | MSFE | 0.2388 | 0.2377 | 0.2373 | 0.2340 | 0.2472 | 0.2430 | DMSFE | 0.0770 | 0.0782 | 0.0780 | 0.0778 | 0.0803 | 0.0793 |
| U-MIDAS | R2 | 0.8810 | 0.8843 | 0.8918 | 0.9054 | 0.9230 | 0.9302 | RMSE | 0.5246 | 0.4669 | 0.5415 | 0.7292 | 0.7439 | 0.8527 | MSFE | 0.2752 | 0.2180 | 0.2932 | 0.5318 | 0.5534 | 0.7271 | DMSFE | 0.1430 | 0.1210 | 0.1751 | 0.3701 | 0.3777 | 0.4827 |
| Stepfun-MIDAS | R2 | 0.8627 | 0.8641 | 0.8661 | 0.8700 | 0.8813 | 0.8829 | RMSE | 0.4763 | 0.4839 | 0.4977 | 0.5728 | 0.6078 | 0.6080 | MSFE | 0.2268 | 0.2342 | 0.2477 | 0.3281 | 0.3694 | 0.3696 | DMSFE | 0.0736 | 0.0996 | 0.0990 | 0.1826 | 0.1980 | 0.1986 |
| Almon-MIDAS | R2 | 0.6872 | 0.6935 | 0.6976 | 0.7051 | 0.7103 | 0.7221 | RMSE | 0.4906 | 0.4909 | 0.5023 | 0.5012 | 0.4973 | 0.4986 | MSFE | 0.2407 | 0.2410 | 0.2523 | 0.2512 | 0.2473 | 0.2486 | DMSFE | 0.0780 | 0.0780 | 0.0796 | 0.0794 | 0.0810 | 0.0796 |
|
|