Research Article

Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China

Table 4

Exchange rate: the goodness of fit and in-sample and out-of-sample prediction accuracy at different lag orders.

ModelIndexLag order
152025303540

Beta-MIDASR20.86170.86210.86190.86190.86640.8668
RMSE0.49030.48630.48730.48770.50040.4938
MSFE0.24040.23640.23750.23780.25040.2439
DMSFE0.07700.07780.07790.07770.07970.0793

Beta-nonzero-MIDASR20.86160.86170.86170.86170.86630.8664
RMSE0.49380.49160.49070.48960.50180.5007
MSFE0.24380.24170.24080.23970.25180.2507
DMSFE0.07810.07800.07790.07780.07980.0798

Exp Almon-MIDASR20.86180.86200.86190.86200.86660.8668
RMSE0.48870.48750.48710.48370.49720.4929
MSFE0.23880.23770.23730.23400.24720.2430
DMSFE0.07700.07820.07800.07780.08030.0793

U-MIDASR20.88100.88430.89180.90540.92300.9302
RMSE0.52460.46690.54150.72920.74390.8527
MSFE0.27520.21800.29320.53180.55340.7271
DMSFE0.14300.12100.17510.37010.37770.4827

Stepfun-MIDASR20.86270.86410.86610.87000.88130.8829
RMSE0.47630.48390.49770.57280.60780.6080
MSFE0.22680.23420.24770.32810.36940.3696
DMSFE0.07360.09960.09900.18260.19800.1986

Almon-MIDASR20.68720.69350.69760.70510.71030.7221
RMSE0.49060.49090.50230.50120.49730.4986
MSFE0.24070.24100.25230.25120.24730.2486
DMSFE0.07800.07800.07960.07940.08100.0796