Research Article

Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China

Table 5

The goodness of fit and prediction accuracy at the optimal lag order of each cross-multiplication variable.

ModelIndexCRB × coalNH × coalExchange × coalCRB × NHCRB × exchange
Lag = 36Lag = 24Lag = 22Lag = 37Lag = 24

Beta-MIDASR20.86520.86020.86960.87400.8657
RMSE0.55420.55670.63490.66260.6733
MSFE0.30720.31000.40310.43900.4534
DMSFE0.08820.09010.10440.10170.1099

Beta-nonzero-MIDASR20.86680.85820.85980.87350.8665
RMSE0.57920.55020.54040.66650.6772
MSFE0.33550.30280.29210.44420.4586
DMSFE0.09470.08930.08530.10180.1116

Exp Almon-MIDASR20.86590.86150.87060.87420.8659
RMSE0.52220.56620.62590.66460.6794
MSFE0.27270.32060.39170.44170.4616
DMSFE0.08370.09200.10340.10240.1111

U-MIDASR20.93160.90950.90700.92200.9020
RMSE0.52050.52880.59060.80270.8192
MSFE0.27100.27960.34880.64430.6711
DMSFE0.06260.07690.09810.12640.1475

Stepfun-MIDASR20.90960.89190.89070.89400.8868
RMSE0.51180.47450.49440.70870.7423
MSFE0.26190.22520.24440.50220.5509
DMSFE0.07420.07220.07980.12950.1378

Almon-MIDASR20.90430.88700.88850.87780.8731
RMSE0.49110.48630.50910.63440.5910
MSFE0.24120.23650.25920.40240.3493
DMSFE0.06130.06790.08090.10540.0933