Research Article
Research on the Influence of Volatility of International Energy Commodity Futures Market on CPI in China
Table 5
The goodness of fit and prediction accuracy at the optimal lag order of each cross-multiplication variable.
| Model | Index | CRB × coal | NH × coal | Exchange × coal | CRB × NH | CRB × exchange | Lag = 36 | Lag = 24 | Lag = 22 | Lag = 37 | Lag = 24 |
| Beta-MIDAS | R2 | 0.8652 | 0.8602 | 0.8696 | 0.8740 | 0.8657 | RMSE | 0.5542 | 0.5567 | 0.6349 | 0.6626 | 0.6733 | MSFE | 0.3072 | 0.3100 | 0.4031 | 0.4390 | 0.4534 | DMSFE | 0.0882 | 0.0901 | 0.1044 | 0.1017 | 0.1099 |
| Beta-nonzero-MIDAS | R2 | 0.8668 | 0.8582 | 0.8598 | 0.8735 | 0.8665 | RMSE | 0.5792 | 0.5502 | 0.5404 | 0.6665 | 0.6772 | MSFE | 0.3355 | 0.3028 | 0.2921 | 0.4442 | 0.4586 | DMSFE | 0.0947 | 0.0893 | 0.0853 | 0.1018 | 0.1116 |
| Exp Almon-MIDAS | R2 | 0.8659 | 0.8615 | 0.8706 | 0.8742 | 0.8659 | RMSE | 0.5222 | 0.5662 | 0.6259 | 0.6646 | 0.6794 | MSFE | 0.2727 | 0.3206 | 0.3917 | 0.4417 | 0.4616 | DMSFE | 0.0837 | 0.0920 | 0.1034 | 0.1024 | 0.1111 |
| U-MIDAS | R2 | 0.9316 | 0.9095 | 0.9070 | 0.9220 | 0.9020 | RMSE | 0.5205 | 0.5288 | 0.5906 | 0.8027 | 0.8192 | MSFE | 0.2710 | 0.2796 | 0.3488 | 0.6443 | 0.6711 | DMSFE | 0.0626 | 0.0769 | 0.0981 | 0.1264 | 0.1475 |
| Stepfun-MIDAS | R2 | 0.9096 | 0.8919 | 0.8907 | 0.8940 | 0.8868 | RMSE | 0.5118 | 0.4745 | 0.4944 | 0.7087 | 0.7423 | MSFE | 0.2619 | 0.2252 | 0.2444 | 0.5022 | 0.5509 | DMSFE | 0.0742 | 0.0722 | 0.0798 | 0.1295 | 0.1378 |
| Almon-MIDAS | R2 | 0.9043 | 0.8870 | 0.8885 | 0.8778 | 0.8731 | RMSE | 0.4911 | 0.4863 | 0.5091 | 0.6344 | 0.5910 | MSFE | 0.2412 | 0.2365 | 0.2592 | 0.4024 | 0.3493 | DMSFE | 0.0613 | 0.0679 | 0.0809 | 0.1054 | 0.0933 |
|
|