Research Article
A Prediction Method of Electromagnetic Environment Effects for UAV LiDAR Detection System
Table 3
Parameter optimization table.
| Model | Parameter |
| ADB | AdaBoostClassifier (n_estimators = 100, learning_rate = 0.8, algorithm = SAMME.R) | SVC | SVC (kernel = rbf, gamma = 0.2, decision_function_shape = ovo, C = 1) | RF | RandomForestClassifier (criterion = “gini,” max_depth = 12, max_leaf_nodes = 20) | DT | DecisionTreeClassifier (min_samples_split = 10, max_depth = 20, splitter = random) | XGB | XGBClassifier (eta = 0.1, objective = multi:softmax, num_class = 4) | GDBT | GradientBoostingClassifier (n_estimators = 90, learning_rate = 0.3, loss = deviance) | KNN | KNeighborsClassifier (n_neighbors = 85, Algorithm = auto) |
|
|