Research Article
Dual-Channel Reasoning Model for Complex Question Answering
Table 1
The performance of our model and competing approaches on the HotpotQA dataset.
| Model | Answer | Sup fact | Joint | EM | F1 | EM | F1 | EM | F1 |
| Baseline | 45.60 | 59.02 | 20.32 | 64.49 | 10.83 | 40.16 | NMN | 49.58 | 62.71 | — | — | — | — | KGNN | 50.81 | 65.75 | 38.74 | 76.69 | 22.40 | 52.82 | BERT Plus | 55.84 | 69.76 | 42.88 | 80.74 | 27.13 | 58.23 | DFGN | 56.31 | 69.69 | 51.50 | 81.62 | 33.62 | 59.82 | DFGN | 55.19 | 68.68 | 49.72 | 80.67 | 31.53 | 58.26 | DFGN/BERT | 55.17 | 68.49 | 49.85 | 81.06 | 31.87 | 58.23 |
| Our model | Baseline-Dual | 49.56 | 64.15 | 47.61 | 83.45 | 26.44 | 55.41 | CGDe-Baseline | 51.23 | 65.42 | 46.71 | 83.03 | 27.69 | 55.77 | FGIn-Baseline | 50.42 | 64.82 | 48.93 | 84.10 | 27.95 | 56.47 | DFGN_Dual | 55.42 | 68.90 | 50.70 | 81.70 | 31.76 | 58.83 |
|
|