Research Article
A Clonal Selection Optimization System for Multiparty Secure Computing
Algorithm 1
Parallelized model training process.
| | Input: | | | Original dataset , stride , number of nodes , local iterations | | | Central server splits to participating nodes: | | | Batch size of each participating node | | | For all participating nodes parallel do | | | Initialize the model parameters of each node | | | For all data in dataset | | | Generate multiple parameter weight update vectors according to | | | Calculate the corresponding loss function value | | | Select the optimal update vector | | | Update the parameters of the node model | | | Until number of iteration do | | | Update the global parameter weights for the node model | | | | | | End for | | | Aggregate the update information of all nodes | | | Output | | | Update central model parameters |
|