Research Article

A Clonal Selection Optimization System for Multiparty Secure Computing

Algorithm 1

Parallelized model training process.
Input:
 Original dataset , stride , number of nodes , local iterations
 Central server splits to participating nodes:
 Batch size of each participating node
For all participating nodes parallel do
  Initialize the model parameters of each node
  For all data in dataset
    Generate multiple parameter weight update vectors according to
    Calculate the corresponding loss function value
    Select the optimal update vector
   Update the parameters of the node model
  Until number of iteration do
   Update the global parameter weights for the node model
   
End for
  Aggregate the update information of all nodes
Output
 Update central model parameters