Research Article

A Clonal Selection Optimization System for Multiparty Secure Computing

Algorithm 4

Federated learning process.
Initial:
 Parameters function , d is the maximum engagement of each client, the maximum iterations of node is Imax
 Federated central sever do:
  For each weight of model do
   For each iteration do
    Local optimization process:
     Select a fixed number of eligible clients
     For each clients do
      Optimize parameters with local data:
      
   For client Ck: Client parameter update (Ck, θi) do
    Divide the dataset DA into several subdatasets Ds
    For local iteration do
     Update
  Return θ to the federated central server