Research Article

Large-Scale Evolutionary Strategy Based on Gradient Approximation

Algorithm 1

GI-ES.
Require:: objective function; : initial ; ;
Ensure: optimal
(1)initial and ;
(2)repeat
(3)  fordo
(4)    draw sample ;
(5)    ;
(6)    evaluate the fitness value
(7)  end for
(8)  sort the sampling particles according to the fitness value and compute utilities function
(9)  compute approximate gradients according to (17)–(20)
(10)  update parameters use the approximate gradient information
(11)  update the approximate mean vector
(12)  update the scalar step size
(13)  update the covariance factor
(14)until the termination criterion