Complexity / 2021 / Article / Tab 10 / Corrigendum
Corrigendum to “A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators” Table 10 Experimental results for the MILP model for lot-sizing and scheduling on parallel flexible injection machines.
Dataset Number of constraints Number of variables Number of binary variables Number of integer variables Number of continuous variables Number of nonzeros Objective value GAP (%) Termination condition Time (sec) S1 2 4 6 3 253 180 48 48 84 548 30700049.77 0.00 Optimal 0.1875 S2 4 6 8 3 529 360 144 144 72 1240 13400404.31 0.00 Optimal 0.0312 S3 6 8 16 3 1037 720 288 288 144 2672 11100863.25 0.00 Optimal 0.0156 S4 8 10 22 3 1617 1116 480 480 156 4372 8101150.62 0.00 Optimal 0.0781 M1 10 12 24 14 10882 7056 3360 3360 336 29232 75409783.76 0.00 Optimal 2.9056 M2 12 14 28 14 14630 9408 4704 4704 0 39872 162208156.70 0.00 Optimal 9.8883 M3 14 16 32 14 18930 12096 6272 6272 -448 52160 129012740.08 0.00 Optimal 19.5891 M4 16 18 36 14 23782 15120 8064 8064 -1008 66096 109311635.70 0.00 Optimal 24.0256 L1 18 20 40 14 29186 18480 10080 10080 -1680 81680 227015024.17 0.00 Optimal 2.0308 L2 20 40 60 14 61754 38640 22400 22400 -6160 164880 698925080.54 0.20 maxTimeLimit 18000.6893 L3 25 45 70 14 85269 53130 31500 31500 -9870 230910 542429122.73 0.00 Optimal 3786.1561 L4 30 50 80 14 112234 69720 42000 42000 -14280 307240 834529827.82 0.51 maxTimeLimit 18001.5215