Complexity / 2021 / Article / Tab 11 / Corrigendum
Corrigendum to “A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators” Table 11 Experimental results for the MILP model for lot-sizing and scheduling on parallel flexible injection machines with setup common operators.
Dataset Number of constraints Number of variables Number of binary variables Number of integer variables Number of continuous variables Number of nonzeros Objective value GAP (%) Termination condition Time (sec) S1 2 4 6 2 3 392 228 96 96 36 880 30700299.29 0.00 Optimal 0.015592575 S2 4 6 8 2 3 904 504 288 288 -72 2224 9700768.824 0.00 Optimal 0.015617609 S3 6 8 16 2 3 1760 1008 576 576 -144 4736 23501097.9 0.00 Optimal 0.062484741 S4 8 10 22 2 3 2800 1596 960 960 -324 7860 18901770.98 0.00 Optimal 0.031243086 M1 10 12 24 4 14 36744 17136 13440 13440 -9744 100032 67810309.09 0.00 Optimal 12.21586823 M2 12 14 28 4 14 50596 23520 18816 18816 -14112 138992 99214112.49 0.00 Optimal 26.69681978 M3 14 16 32 4 14 66656 30912 25088 25088 -19264 184320 143015128.2 0.00 Optimal 14.35598087 M4 16 18 36 4 14 84924 39312 32256 32256 -25200 236016 146316474 0.00 Optimal 79.8799355 L1 18 20 40 6 14 156200 68880 60480 60480 -52080 432320 211521532.7 0.00 Optimal 241.9122446 L2 20 40 60 8 14 454244 195440 179200 179200 -162960 1212080 867861481 1.54 maxTimeLimit 18015.20472 L3 25 45 70 12 14 950246 399630 378000 378000 -356370 2545660 915900800.2 5.39 maxTimeLimit 18021.99296 L4 30 60 120 15 14 1893720 791280 756000 756000 -720720 5256960 1359169510 4.31 maxTimeLimit 18065.29413