Research Article
Multivariate CNN-LSTM Model for Multiple Parallel Financial Time-Series Prediction
Table 2
Parameters configuration for the proposed multivariate CNN-LSTM model.
| Parameters | Values | Layer |
| Convolutional layer filters | 64 | CNN | Convolutional layer kernel_size | 2 | CNN | Convolutional layer activation function | Relu | CNN | Convolutional layer padding | Valid | CNN | Pooling layer pool_size | 2 | CNN | Number of LSTM layer 1 hidden unit | 100 | LSTM | Number of LSTM layer 2 hidden unit | 100 | LSTM | LSTM layer 1 and 2 activation function | Relu | LSTM | Time step | 4 | LSTM | Optimizer | Adam | Model fitting | Loss function | MAE | Model fitting | Epochs | 1000 | Model fitting |
|
|