Research Article

An Optimized Design of New XYθ Mobile Positioning Microrobotic Platform for Polishing Robot Application Using Artificial Neural Network and Teaching-Learning Based Optimization

Table 7

Analysis of variance for safety factor.

SourceDFSeq SSContribution (%)Adj SSAdj MSF-value value

Model200.39610872.620.3961080.0198050.800.679
Linear50.21050238.590.1679440.0335891.350.359
A10.0315055.780.0414890.0414891.670.244
B10.0108221.980.0033620.0033620.140.726
C10.16008229.350.1092720.1092724.390.081
D10.0003030.060.0015100.0015100.060.814
E10.0077891.430.0107270.0107270.430.536
Square50.0208783.830.0205100.0041020.160.967
AA10.0065931.210.0010060.0010060.040.847
BB10.0008440.150.0007100.0007100.030.871
CC10.0103581.900.0121920.0121920.490.510
DD10.0008860.160.0023190.0023190.090.770
EE10.0021960.400.0021430.0021430.090.779
2-Way interaction100.16472830.200.1647280.0164730.660.731
AB10.0011770.220.0013420.0013420.050.824
AC10.05630610.320.0565560.0565562.270.182
AD10.0000000.000.0000380.0000380.000.970
AE10.0007130.130.0012780.0012780.050.828
BC10.0043430.800.0034750.0034750.140.721
BD10.0186173.410.0186490.0186490.750.420
BE10.05786110.610.0603860.0603862.430.170
CD10.0000850.020.0000840.0000840.000.955
CE10.0228014.180.0236400.0236400.950.367
DE10.0028250.520.0028250.0028250.110.748
Error60.14933327.380.1493330.024889
Total260.545441100.00