Research Article

Marshall–Olkin Extended Gumbel Type-II Distribution: Properties and Applications

Table 4

MLE and their sample statistics for some simulated samples and true values  = 2,  = 4,  = 6, and  = 5.

Nelder–MeadQuasi-NewtonFletcher–Reeves
nParametersMinMaxMeanStdMinMaxMeanStdMinMaxMeanStd

500.1541471.24.23439.6420.26811.6231.8130.6680.5047.3191.740.448
0.45622.5415.1752.4480.93812.6684.2130.8182.0189.8914.2110.44
1.81534.8775.7731.5903.52511.0516.0990.623.7948.5826.2620.561
3672.72083.43.16588.6781.71911.44.8650.6874.23511.5384.6640.664
Iteration7950114138162954625492283541

1000.293430.191.9637.5770.1948.171.770.4790.5954.0141.7710.335
0.52621.5144.9981.6141.33611.5594.2030.7132.0797.3124.1690.317
2.18632.6285.5940.8793.7028.4546.0260.4434.2918.1216.220.423
854.336.55.20813.6511.4438.8154.8480.5941.4237.7644.7250.517
Iteration7950113227199495039792184231

3000.5655.1461.6250.5050.51913.8511.810.3610.6593.6021.800.301
2.4059.4434.9080.8962.18712.2884.1090.4112.6127.4024.1630.265
4.1877.4395.5010.4213.367.5956.0490.3354.5587.3286.2080.334
6.86513.1485.5340.8770.15111.0464.8360.4260.8388.3224.7570.424
Iteration7927312722213085158892485831

5000.733.8681.5960.3780.4114.3721.8050.3090.4944.3411.8920.261
2.9697.924.8990.6961.98.2824.1060.3801.9457.9024.1050.236
4.4426.6895.4810.3254.1817.7186.0390.3233.9277.2406.0240.291
3.7817.3435.5530.7151.5619.1434.820.3960.9286.9974.7240.387
Iteration85255127252093452611499086630

10000.8932.7811.5590.2610.4734.3191.7790.2590.6614.0161.8240.256
3.3716.9744.8610.502.0998.3834.0990.3762.5697.6904.1410.228
4.7216.5515.4760.2334.2567.1485.9840.2174.3337.3076.1820.215
2.96413.4425.5660.6040.7598.3984.780.3900.3256.7054.7880.385
Iteration83253128232134954641295086729

From Tables 3 and 4, it can be seen that with increasing sample size, the standard deviations for the estimates tend to decrease and the Fletcher–Reeves method provides a better estimate as compared with the Nelder–Mead method and Quasi-Newton method with increasing sample size.