Research Article

Forecasting Methods in Various Applications Using Algorithm of Estimation Regression Models and Converting Data Sets into Markov Model

Table 2

Regression model polynomial of the second degree.

ModelDepthRegression equation

y = ax2 + bx + c0.13 ≤ x < 0.31Temp (2) = 368.68x2 − 154.22x + 35.918
pH (2) = −797.13x2 + 334.61x − 21.488
ORP (2) = 68081x2 − 27968x + 2434.7
DO (2) = −991.91x2 + 393.23x − 19.756
RES (2) = 1654.4x2 − 676.1x + 75.934
SAL (2) = −7180x2 + 2967.8x − 221.95
SSG (2) = −5779.4x2 + 2389.9x − 182.11
TN (2) = 1955.9x2 − 733.97x + 112.76
cd (2) = −8.1618x2 + 3.4154x − 0.2671
cu (2) = −6.875x2 + 2.8562x − 0.1761
zn (2) = 1.0662x2 − 0.629x + 0.1258
pb (2) = 0.1838x2 − 0.1085x + 0.023
fe (2) = 33.603x2 − 15.626x + 2.1925
0.31 ≤ x < 1.34Temp (2) = 714.29x2 − 497.14x + 108.07
pH (2) = −491.43x2 + 334.51x − 47.783
ORP (2) = 18814x2 − 13666x + 2469
DO (2) = −1695x2 + 1132.8x − 177.86
RES (2) = −14000x2 + 9660x − 1633.2
SAL (2) = 21790x2 − 15052x + 2616.4
SSG (2) = 16771x2 − 11584x + 2011.3
TN (2) = −22200x2 + 15258x − 2547.6
cd (2) = −3.4286x2 + 2.3943x − 0.3757
Cu (2) = −5.8571x2 + 4.1986x − 0.6647
zn (2) = −1.4286x2 + 1.1143x − 0.1761
pb (2) = 0.1429x2 − 0.0414x + 0.0051
fe (2) = −357x2 + 252.43x − 43.387
0.3 ≤ x < 0.38Total pb (2) = 506.67x2 − 322.77x + 51.42

(2) refers to the estimated elements in Lake Manzala by regression model.