Research Article

Forecasting Methods in Various Applications Using Algorithm of Estimation Regression Models and Converting Data Sets into Markov Model

Table 3

Regression models polynomial of the first, second, and third degree.

ModelDepthRegression equation

y = ax3 + bx2 + cx + d1.34 ≤ x ≤ 2.5Temp (2) = 9.5611x3 − 55.367x2 + 104.34x − 43.508
pH (2) = −3.854x3 + 23.964x2 − 47.844x + 38.775
ORP (2) = −519.66x3 + 3246.5x2 − 6421.5x + 3872.8
DO (2) = −38.682x3 + 238.37x2 − 473.74x + 307.87
RES (2) = −9.2607x3 + 31.564x2 − 14.813x + 2.4553
SAL (2) = −20.088x3 + 155.97x2 − 374.06x + 313.21
SSG (2) = −18.391x3 + 137.34x2 − 321.19x + 260.33
TN (2) = −1226.9x3 + 6963.8x2 − 12820x + 7762.6
cd (2) = −0.0467x3 + 0.2661x2 − 0.4855x + 0.3171
cu (2) = −0.041x3 + 0.242x2 − 0.4578x + 0.3485
zn (2) = 0.0325x3 − 0.2051x2 + 0.4232x − 0.2459
pb (2) = 0.0038x3 − 0.025x2 + 0.054x − 0.0307
fe (2) = −4.2495x3 + 23.521x2 − 41.898x + 24.608
0.38 < x ≤ 2.5Total pb (2) = 0.006x3 + 0.076x2 − 0.3468x + 0.3533

y = ax + b&y = ax2 + bx + c0.13 ≤ x < 0.3Total pb (2) = −0.4375x + 0.1359
0.13 ≤ x < 0.3EC (2) = −63275x + 71243
0.3 ≤ x < 0.38EC (2) = −2E + 08x2 + 1E + 08x − 2E + 07
0.38 ≤ x < 2EC (2) = −62562x2 + 10838x + 31641
2 ≤ x ≤ 2.5EC (2) = 29094x − 14309
0.13 ≤ x < 0.3COD (2) = 13281x − 1251.6
0.3 ≤ x < 0.38COD (2) = 9E + 06x2 − 5E + 06x + 83615
0.38 ≤ x < 2COD (2) = 12169x − 16183
2 ≤ x ≤ 2.5COD (2) = 550x + 50
0.13 ≤  x < 0.3TDS (2) = −40494x + 45594
0.3 ≤  x < 0.38TDS (2) = −3E + 07x2 + 2E + 07x − 3E + 06
0.38 ≤  x < 2TDS (2) = −40036x2 + 69359x + 20251
2 ≤  x ≤  2.5TDS (2) = 18620x − 9158