Research Article

Local and Deep Features Based Convolutional Neural Network Frameworks for Brain MRI Anomaly Detection

Algorithm 1

Pseudocode of DBP-DAE.
Initialize mini-batch size, epochs number (EP), pretraining learning rate (PLR), number of layers (NL), dimension (D), total number of classes (C), and neurons in each hidden layer n[L]
(1)Input DBP as a input feature Vector with D dimensions
(2)For each layer (NL):
(3) 1< L < D
(4) D-input and D-hidden
(5) If (L = 1)
(6)  n [1] = D-hidden
(7)  D = D-input
(8) Else
(9)  Dimension of visible layer n[L − 1]
(10)  Dimension of hidden layer n[L]
(11) End
(12) Initialize , ,
(13) For each pretraining epoch
(14)  For each mini batch
(15)   Compute reconstruction
(16)    
(17)   Compute Cost
(18)     
(19)   Update , ,
(20)  End
(21) Freeze reconstruction layer
(22)End
(23)Initial parameters of logistic regression layer
(24)Input of classifier layer = n[D]
(25)Output of classifier layer = C
(26)For each fine-tuning
(27) For each mini batch
(28)  Compute probability function of each class regarding to equation (6)
(29)  Update weights with backpropagation
(30) End
(31)End
(32)End