Research Article

Digital Economy’s Spatial Implications on Urban Innovation and Its Threshold: Evidence from China

Table 14

Spatial spillover distance of the impact of the southern region’s digital economy on urban innovation.

Distance threshold (km)Direct effectIndirect effectDistance threshold (km)Direct effectIndirect effect
Coefficientt-statisticCoefficientt-statisticCoefficientt-statisticCoefficientt-statistic

501.274∗∗∗(5.14)3.240(1.52)10500.992∗∗∗(3.65)−5.721∗(−1.87)
1001.100∗∗∗(4.33)7.123∗∗(2.30)11000.985∗∗∗(3.59)−5.860∗∗(−1.96)
1501.140∗∗∗(4.46)8.576∗∗(2.34)11500.925∗∗∗(3.39)−5.541∗∗(−2.06)
2000.812∗∗∗(3.05)11.568∗∗∗(3.66)12000.999∗∗∗(3.64)−7.213∗∗(−2.50)
2500.884∗∗∗(3.30)11.271∗∗∗(4.33)12500.988∗∗∗(3.63)−4.964∗∗(−2.20)
3001.093∗∗∗(4.07)16.043∗∗∗(4.37)13000.933∗∗∗(3.42)−3.392∗∗(−1.96)
3501.135∗∗∗(4.19)16.508∗∗∗(4.81)13500.727∗∗∗(2.66)−2.562∗∗(−2.15)
4001.243∗∗∗(4.57)20.724∗∗∗(5.82)14000.862∗∗∗(3.16)−1.698∗(−1.79)
4501.275∗∗∗(4.62)18.638∗∗∗(5.55)14500.843∗∗∗(3.11)−1.777∗∗(−2.15)
5001.228∗∗∗(4.48)12.721∗∗∗(4.37)15000.793∗∗∗(2.91)−0.949(−1.49)
5501.083∗∗∗(3.93)6.174∗∗(2.23)15500.870∗∗∗(3.23)−0.964∗(−1.84)
6001.103∗∗∗(4.11)−2.619(−0.86)16000.884∗∗∗(3.27)−1.009∗∗(−2.16)
6501.234∗∗∗(4.62)−5.272∗(−1.90)16501.023∗∗∗(3.80)−0.979∗∗(−2.23)
7001.052∗∗∗(3.91)−6.670∗∗(−2.35)17000.957∗∗∗(3.54)−0.904∗∗(−2.13)
7500.871∗∗∗(3.27)−7.546∗∗∗(−2.61)17501.124∗∗∗(4.18)−0.724∗(−1.83)
8000.823∗∗∗(3.10)−9.128∗∗∗(−2.94)18001.119∗∗∗(4.11)−1.201∗∗∗(−2.87)
8500.716∗∗∗(2.68)−10.419∗∗∗(−3.17)18500.985∗∗∗(3.68)−1.012∗∗(−2.38)
9000.762∗∗∗(2.82)−8.469∗∗(−2.51)19001.077∗∗∗(4.03)−1.274∗∗∗(−3.06)
9500.832∗∗∗(3.05)−7.889∗∗(−2.36)19501.111∗∗∗(4.21)−0.941∗∗(−2.18)
10000.944∗∗∗(3.47)−4.970∗(−1.77)20001.004∗∗∗(3.80)−1.259∗∗∗(−3.21)

Note. ∗∗∗, ∗∗, and ∗ represent the significance level at the 1%, 5%, and 10% levels, respectively. The numbers in brackets are the test values t.