Research Article

Numerical Approach for Solving the Fractional Pantograph Delay Differential Equations

Table 3

The absolute errors in example 2 at , , and .

[17][18][19][12][23][10][14][11]Our method

0.18.68e-044.65e-031.30e-033.80e-051.98e-084.69e-079.76e-091.98e-081.47764e-16
0.31.90e-032.57e-022.63e-032.81e-057.78e-095.39e-075.67e-097.78e-091.07469e-16
0.52.28e-034.43e-022.83e-032.79e-066.34e-051.15e-077.75e-096.34e-055.12793e-17
0.72.27e-035.37e-022.39e-032.39e-054.36e-052.27e-076.91e-094.36e-056.41964e-17
0.92.03e-036.35e-021.64e-033.52e-052.80e-053.37e-075.57e-092.80e-051.12318e-16