Research Article

Numerical Approach for Solving the Fractional Pantograph Delay Differential Equations

Table 5

The absolute errors in example 3 at , , and .

[12][23][10][14][11]Our method

02.50e-081.62e-11005.78e-110
0.28.45e-093.30e-136.13e-103.12e-166.25e-110
0.47.60e-094.17e-122.41e-095.69e-164.90e-113.33067e-16
0.68.20e-091.08e-085.29e-091.11e-153.01e-111.11022e-16
0.89.72e-091.62e-089.05e-091.89e-152.62e-071.11022e-16
13.28e-083.46e-072.22045e-16