Research Article
Novel Feature Selection Method for Nonlinear Support Vector Regression
Table 3
Comparison results of FS-NSVR, L1-SVR, Lp-SVR, and L1-LSSVR for artificial datasets.
| Data sets | Regressor | NMSE | | RMSE | Precision | Recall | CPU S. |
| Type A | FS-NSVR | 0.707 | 0.146 | 0.146 | 22.22 | 100 | 0.148 | L1-SVR | 1.032 | 0.031 | 0.177 | 16.67 | 10 | 2.107 | Lp-SVR | 1.028 | 0.028 | 0.176 | — | 0 | 2.701 | L1-LSSVR | 1.028 | 0.031 | 0.176 | 0 | 0 | 0.004 |
| Type B | FS-NSVR | 0.032 | 0.884 | 0.069 | 34.48 | 100 | 0.071 | L1-SVR | 1.068 | 0.074 | 0.396 | 1.26 | 10 | 1.379 | Lp-SVR | 1.077 | 0.078 | 0.397 | — | 0 | 2.702 | L1-LSSVR | 1.001 | 0.001 | 0.383 | — | 0 | 0.004 |
| Type C | FS-NSVR | 0.006 | 0.885 | 0.324 | 18.51 | 100 | 0.076 | L1-SVR | 1.003 | 0.009 | 4.186 | 0 | 0 | 1.229 | Lp-SVR | 1.011 | 0.011 | 4.201 | — | 0 | 2.584 | L1-LSSVR | 0.997 | 0.001 | 4.174 | 0 | 0 | 0.005 |
|
|
Bold values refer to the best performing regressors under each criterion.
|