Research Article
A Hybrid Deep Learning Framework for Network Flow Forecasting of Power Grid Enterprise
Table 2
Single-step forecasting (one hour ahead) results and error comparison among different forecasting models.
| | Models | Inflow | Outflow | MAE | MSE | R2 | adjR2 | MAE | MSE | R2 | adjR2 |
| GRU | 32309057 | 3.45e15 | 0.7761 | 0.7729 | 38087998 | 4.4e15 | 0.7542 | 0.7507 | VMD-GRU | 30587150 | 1.19e15 | 0.9244 | 0.9233 | 41196151 | 2.26e15 | 0.8796 | 0.8779 | Xgboost | 49144727 | 5.52e15 | 0.6644 | 0.6597 | 97683111 | 2.91e16 | 0.4462 | 0.4384 | VMD-xgboost | 9026284 | 1.36e14 | 0.9915 | 0.9914 | 11215930 | 2.08e14 | 0.9886 | 0.9885 | VMD-VMD-xgboost | 9034632 | 1.36e14 | 0.9915 | 0.9914 | 11229317 | 2.09e14 | 0.9886 | 0.9884 | VMD-xgboost-adjustment | 8525637 | 1.19e14 | 0.9928 | 0.9927 | 10359168 | 1.77e14 | 0.9908 | 0.9906 | EMD-xgboost | 24017235 | 1.41e15 | 0.9195 | 0.9184 | 39651555 | 2.8e15 | 0.8796 | 0.8779 | Proposed | 6632489 | 7.55e13 | 0.9955 | 0.9954 | 8139553 | 1.13e14 | 0.9942 | 0.9941 |
|
|