Research Article

A Hybrid Deep Learning Framework for Network Flow Forecasting of Power Grid Enterprise

Table 2

Single-step forecasting (one hour ahead) results and error comparison among different forecasting models.

ModelsInflowOutflow
MAEMSER2adjR2MAEMSER2adjR2

GRU323090573.45e150.77610.7729380879984.4e150.75420.7507
VMD-GRU305871501.19e150.92440.9233411961512.26e150.87960.8779
Xgboost491447275.52e150.66440.6597976831112.91e160.44620.4384
VMD-xgboost90262841.36e140.99150.9914112159302.08e140.98860.9885
VMD-VMD-xgboost90346321.36e140.99150.9914112293172.09e140.98860.9884
VMD-xgboost-adjustment85256371.19e140.99280.9927103591681.77e140.99080.9906
EMD-xgboost240172351.41e150.91950.9184396515552.8e150.87960.8779
Proposed66324897.55e130.99550.995481395531.13e140.99420.9941