Research Article
Adaptive Mixed-Attribute Data Clustering Method Based on Density Peaks
Input: rho, delta (represent local density vector ρ and relative distance vector δ) | Output: Sc (set of cluster centers Sc) | (1) | //Step 1. Calculate . | (2) | for i = 1 to length(rho) do | (3) | gamma(i) = rho(i) delta(i) | (4) | end | (5) | //Step 2. Sort rho, delta, gamma (ρ, δ, γ) in descending order: | (6) | Sorted_rho = sort (rho, “descend”); | (7) | Sorted_delta = sort(delta, “descend”); | (8) | Sorted_gamma = sort(gamma, “descend”); | (9) | //Step 3. Calculate the inflection point of rho, delta, gamma using equation (7) separately and construct the three candidate sets , Sp, and Sd. | (10) | Sp = calcinflection(Sorted_rho); | (11) | Sd = calcinflection(Sorted_delta); | (12) | = calcinflection(Sorted_gamma); | (13) | //Step 4. Calculate the intersections of the three sets and return the result Sc. | (14) | Sc = intersection(Sp,Sd,). |
|