Research Article

Adaptive Mixed-Attribute Data Clustering Method Based on Density Peaks

Algorithm 1

Find cluster center.
   Input: rho, delta (represent local density vector ρ and relative distance vector δ)
   Output: Sc (set of cluster centers Sc)
(1)//Step 1. Calculate .
(2)for i = 1 to length(rho) do
(3)  gamma(i) = rho(i)  delta(i)
(4)end
(5)//Step 2. Sort rho, delta, gamma (ρ, δ, γ) in descending order:
(6)Sorted_rho = sort (rho, “descend”);
(7)Sorted_delta = sort(delta, “descend”);
(8)Sorted_gamma = sort(gamma, “descend”);
(9)//Step 3. Calculate the inflection point of rho, delta, gamma using equation (7) separately and construct the three candidate sets , Sp, and Sd.
(10)Sp = calcinflection(Sorted_rho);
(11)Sd = calcinflection(Sorted_delta);
(12) = calcinflection(Sorted_gamma);
(13)//Step 4. Calculate the intersections of the three sets and return the result Sc.
(14)Sc = intersection(Sp,Sd,).