Research Article
EFP-GA: An Extended Fuzzy Programming Model and a Genetic Algorithm for Management of the Integrated Hub Location and Revenue Model under Uncertainty
Table 5
Genetic algorithm orthogonal.
| State no. | Population size | Crossover rate | Mutation rate | No. of iterations | Value GAP |
| 1 | 70 | 0.75 | 0.006 | 150 | 0.5032 | 2 | 70 | 0.85 | 0.009 | 300 | 0.1259 | 3 | 70 | 0.95 | 0.01 | 500 | 0.7419 | 4 | 150 | 0.75 | 0.009 | 500 | 0.6635 | 5 | 150 | 0.85 | 0.01 | 150 | 0.4917 | 6 | 150 | 0.95 | 0.006 | 300 | 0.0045 | 7 | 200 | 0.75 | 0.01 | 300 | 0.7124 | 8 | 200 | 0.85 | 0.006 | 500 | 0.7280 | 9 | 200 | 0.95 | 0.009 | 300 | 0.2942 |
|
|