Research Article

Intelligent Ensemble Deep Learning System for Blood Glucose Prediction Using Genetic Algorithms

Table 4

Mean (standard deviation in parentheses) RMSE for 29 diabetic patients using univariate and multivariate time-series models.

RMSEPH = 15 minPH = 30 minPH = 60 min
UniMultiUniMultiUniMulti

RNN11.59 (3.59)11.39 (3.43)20.2 (6)19.45 (5.4)32.65 (9.44)31.25 (8.94)
LSTM11.89 (3.83)11.83 (3.3)21.3 (6.05)20.59 (6.15)33.43 (9.59)32.71 (9.7)
Stacked LSTM12.57 (5.39)11.59 (3.43)20.57 (5.66)20.54 (6.12)34.63 (9.98)31.91 (8.9)
Bidirectional LSTM12.03 (3.42)12.02 (3.6)21.01 (6.05)19.89 (5.63)33.54 (9.25)31.99 (9.24)
GRU11.50 (3.54)11.37 (3.29)20.46 (5.89)19.86 (5.4)32.96 (9.36)32.25 (9.12)
Baseline ARIMA14.82 (4.41)23.11 (6.66)35.67 (10.23)
Proposed model11.28 (3.34)11.08 (3.19)19.99 (5.59)19.25 (5.28)33.13 (9.27)31.3 (8.81)
-value0.32

-value 0.05 -value 0.01.