Research Article

Predicting and Investigating the Permeability Coefficient of Soil with Aided Single Machine Learning Algorithm

Table 7

Comparison between ML models in previous studies and the GB model proposed in this study for predicting the permeability coefficient of soil.

ReferenceBest machine learning algorithmNumber of inputsDataset sizeBest performance evaluation for testing part

Pham et al. [33]RF6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content84R2 = 0.724
RMSE = 0.840 × 10−11 m/s
MAE = 0.490 × 10−11 m/s
Pham et al. [34]M5P6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content84R2 = 0.766
RMSE = 0.810 × 10−11 m/s
MAE = 0.450 × 10−11 m/s
Bui et al. [35]TLBO-ANN6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content84R2 = 0.819
RMSE = 0.294 × 10−11 m/s
MAE = 0.231 × 10−11 m/s
Ahmad et al. [36]GPR-PUK6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content84R2 = 0.951
RMSE = 0.620 × 10−11 m/s
MAE = 0.370 × 10−11 m/s
This studyGB7 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content + plasticity index84R2 (mean value of 10000 runs) = 0.804
R2 = 0.971
RMSE = 0.199 × 10−11 m/s
MAE = 0.161 × 10−11 m/s
MAPE = 0.185