| | Reference | Best machine learning algorithm | Number of inputs | Dataset size | Best performance evaluation for testing part |
| | Pham et al. [33] | RF | 6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content | 84 | R2 = 0.724 | | RMSE = 0.840 × 10−11 m/s | | MAE = 0.490 × 10−11 m/s | | Pham et al. [34] | M5P | 6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content | 84 | R2 = 0.766 | | RMSE = 0.810 × 10−11 m/s | | MAE = 0.450 × 10−11 m/s | | Bui et al. [35] | TLBO-ANN | 6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content | 84 | R2 = 0.819 | | RMSE = 0.294 × 10−11 m/s | | MAE = 0.231 × 10−11 m/s | | Ahmad et al. [36] | GPR-PUK | 6 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content | 84 | R2 = 0.951 | | RMSE = 0.620 × 10−11 m/s | | MAE = 0.370 × 10−11 m/s | | This study | GB | 7 inputs: water content, void ratio, specific density, liquid limit, plastic limit, and clay content + plasticity index | 84 | R2 (mean value of 10000 runs) = 0.804 | | R2 = 0.971 | | RMSE = 0.199 × 10−11 m/s | | MAE = 0.161 × 10−11 m/s | | MAPE = 0.185 |
|
|