Research Article

Employing Machine Learning-Based Predictive Analytical Approaches to Classify Autism Spectrum Disorder Types

Table 2

Parameters considered for different machine and deep learning models.

ModelParametersBest Parameters

RF(i) n_estimator = [50, 150, 200](i) n_estimator = 200
(ii) min_samples_split = [2, 5, 10](ii) min_samples_split = 5
(iii) min_samples_leaf = [1, 2, 4](iii) min_samples_leaf = 4
(iv) max_features = [auto, rbf](iv) max_features = auto
(v) PCA n_components = 7

SVM(i) kernel = [linear, rbf](i) kernel = linear
(ii) gamma = [0.001, 0.01, 0.1](ii) gamma = 0.001
(iii) C = [0.001, 0.01, 0.1](iii) C = 0.001
(iv) PCA n_components = 2

NB(i) var_smoothing = np.logspace (0, 9, num = 20)(i) var_smoothing = 1.0
(ii) PCA n_components = 2

KNN(i) n_neighbors = [17](i) n_neighbors = 7
(ii) p = [1, 2, 5](ii) p = 1
(iii) PCA n_components = 7

DNN(i) activation function = [softplus, softmax, softsign, relu, tanh, sigmoid, hard_sigmoid, linear](i) activation function = relu
(ii) batch_size = [10, 50, 100](ii) batch_size = 10
(iii) epochs = [10, 20, 40, 50, 80, 100](iii) epochs = 10
(iv) optimizer = [RMSprop, SGD, Adagrad, Adadelta, Adam, Adamax, Nadam](iv) optimizer = SGD
(v) learn_rate = [0.001, 0.01, 0.1, 0.2, 0.3](v) learn_rate = 0.001
(vi) momentum = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9](vi) momentum = 0.0
(vii) init_mode = [uniform, lecun_uniform, normal, zero, glorot_normal, glorot_uniform, he_normal, he_uniform](vii) init_mode = uniform
(viii) dropout_rate = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9](viii) dropout_rate = 0.0
(ix) weight_constraint = [15](ix) weight_constraint = 1