Research Article
Modelling on Car-Sharing Serial Prediction Based on Machine Learning and Deep Learning
Table 10
Machine learning for historical data with weather data evaluation results.
| | MAE | MSE | RMSE | MAPE | RMSLE |
| XGBoost | 0.07077 | 0.00944 | 0.09843 | 0.10385 | 0.07077 | VAR | 1.05296 | 1.192 | 1.480543 | 0.43748 | 1.12674 | SVM | 1.08711 | 1.60693 | 1.68354 | 1.79101 | 1.1896 | KNN | 1.19562 | 2.14944 | 1.7146 | 1.90031 | 1.44379 | (a) Class A |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.09003 | 0.02233 | 0.1498 | 0.14143 | 0.05296 | VAR | 0.44379 | 0.36095 | 0.60079 | 0.13328 | 0.09003 | SVM | 0.72164 | 1.03892 | 1.02093 | 1.14312 | 0.69041 | KNN | 0.76347 | 1.4106 | 1.18769 | 1.23748 | 0.72168 | (b) Class B |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.11705 | 0.03418 | 0.18679 | 0.27058 | 0.11705 | VAR | 0.43726 | 0.34063 | 0.58364 | 0.41371 | 0.43726 | SVM | 0.80968 | 0.98371 | 0.99181 | 1.12363 | 0.54982 | KNN | 0.83909 | 1.86221 | 1.36451 | 1.22429 | 0.83915 | (c) Class C |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.02945 | 0.00307 | 0.05401 | 0.03076 | 0.02951 | VAR | 0.43389 | 0.34523 | 0.58756 | 0.1595 | 0.43389 | SVM | 0.54583 | 0.69474 | 0.83312 | 1.16663 | 0.54594 | KNN | 0.61329 | 1.14941 | 1.07194 | 1.18616 | 0.81517 | (d) Class D |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.01711 | 0.00215 | 0.04635 | 0.00462 | 0.01711 | VAR | 0.08469 | 0.08491 | 0.29139 | 0.1393 | 0.08519 | SVM | 0.13407 | 0.11862 | 0.34422 | 0.52147 | 0.08471 | KNN | 0.2732 | 0.13283 | 0.36446 | 1.94885 | 0.37281 | (e) Class E |
|
|