Research Article
Modelling on Car-Sharing Serial Prediction Based on Machine Learning and Deep Learning
Table 6
Machine learning for univariate time series evaluation results.
| | MAE | MSE | RMSE | MAPE | RMSLE |
| XGBoost | 0.07272 | 0.00975 | 0.09868 | 0.30398 | 0.07189 | VAR | 1.06025 | 1.20552 | 1.4851 | 0.98598 | 1.15297 | SVM | 1.15297 | 1.86949 | 1.69395 | 1.7977 | 1.3575 | KNN | 1.19834 | 2.77452 | 1.77467 | 1.91974 | 1.45087 | (a) Class A |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.09125 | 0.02252 | 0.14942 | 0.18352 | 0.06025 | VAR | 0.45087 | 0.36788 | 0.60653 | 0.14527 | 0.09057 | SVM | 0.72289 | 1.04231 | 1.01927 | 1.14777 | 0.960432 | KNN | 0.76353 | 1.48786 | 1.18645 | 1.25337 | 0.72234 | (b) Class B |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.1179 | 0.03489 | 0.18489 | 0.29007 | 0.1179 | VAR | 0.43931 | 0.34352 | 0.5861 | 0.50319 | 0.43931 | SVM | 0.81499 | 0.99441 | 0.99721 | 1.1251 | 0.59046 | KNN | 0.83915 | 1.86306 | 1.36483 | 1.22767 | 1.30815 | (c) Class C |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.03654 | 0.00314 | 0.05391 | 0.04028 | 0.03299 | VAR | 0.43459 | 0.34597 | 0.58819 | 0.18361 | 0.43459 | SVM | 0.54589 | 0.69401 | 0.83355 | 1.16683 | 0.54795 | KNN | 0.61745 | 1.14995 | 1.07216 | 1.18775 | 0.90985 | (d) Class D |
| | MAE | MSE | RMSE | MAPE | RMSLE | XGBoost | 0.04051 | 0.00285 | 0.05338 | 0.00683 | 0.04051 | VAR | 0.08543 | 0.08782 | 0.29143 | 0.14278 | 0.08659 | SVM | 0.14529 | 0.11864 | 0.34444 | 0.53728 | 0.08543 | KNN | 0.27331 | 0.13296 | 0.56446 | 1.9495 | 0.47325 | (e) Class E |
|
|