Research Article

A Quantitative Study on Dream of the Red Chamber: Word-Length Distribution and Authorship Attribution

Table 5

Using the Altmann-Fitter to fit the dynamic word-length distribution data of the three parts of DRC.

DMPart IPart IIPart III
X2CDFR2X2CDFR2X2CDFR2

A159.130.002020.9996155.350.001920.9996132.270.001720.9997
B389.530.004930.9992361.690.004530.9993341.080.004330.9994
C274.190.003430.9997231.260.002930.9998225.450.002830.9998
D68.920.000921.000035.470.000421.000067.050.000821.0000
E96.350.001231.000057.920.000731.0000100.000.001231.0000
F508.790.006410.9990493.780.006210.9991430.860.005410.9992
G66.870.000821.000033.030.000421.000063.730.000821.0000
H415.330.005230.9992376.080.004720.9994361.540.004520.9994
I148.310.001930.9998114.110.001430.9998132.620.001730.9998
J384.140.004820.9992351.960.004420.9993336.500.004220.9994
K70.140.000921.000035.510.000421.000070.380.000921.0000
L81.600.001011.000044.190.000611.000083.760.001011.0000

Note. A: hyper-Pascal (k, m, q); B: hyper-Poisson (a, b); C: positive Cohen–Poisson (a, α); D: positive Cohen-negative binomial (k, p, α); E: extended logarithmic (θ, α); F: extended positive binomial (n, p; α fixed); G: extended positive-negative binomial (k, p; α fixed); H: Dacey–Poisson (a, α); I: Shenton–Skees geometric (p, a); J: Dacey-negative binomial (k, p, α); K: Shenton–Skees logarithmic (a, b, θ); L: right truncated modified Zipf–Alekseev (a, b; n = x-max,α fixed).