Research Article

Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials

Table 1

Statistics of parameters of the training and testing datasets.

Statistical parameterDatasetInput variableOutput variable
D10 (mm)D30 (mm)D60 (mm)D90 (mm)C CC UGMFMRUCSmin (MPa)UCSmax (MPa)γ (kN/m3)σn (MPa)τ (MPa)

MinimumTotal data0.0100.5601.2002.6000.1001.3600.2003.0001.0001.0005.0009.3200.0020.005
Training0.0100.5601.2002.6000.1001.3600.2003.0001.0001.0005.0009.3200.0020.005
Testing0.0100.5601.2002.6000.1001.4700.2003.0001.0001.0005.0009.3200.0210.024

MaximumTotal data33.90042.40080.100100.00022.2701040.0006.0008.8006.000250.000400.00038.9004.2053.921
Training33.90042.40080.100100.00022.2701040.0006.0008.8006.000250.000400.00038.9004.2053.921
Testing33.90042.40050.00099.00022.2701040.0006.0008.8005.000100.000250.00038.9003.2232.492

MeanTotal data4.4637.86018.28039.9272.40469.5612.9036.1424.32773.691168.45520.7990.7340.662
Training4.8678.46519.28740.3862.19953.3242.7886.2504.36475.045170.68220.7660.7290.660
Testing2.8875.44214.25238.0913.226134.5103.3655.7094.18268.273159.54520.9320.7560.668

Standard deviationTotal data8.87510.33514.42022.4323.414193.6281.2781.2980.95737.97587.8444.8610.7850.652
Training9.17910.57715.13522.0183.075156.0641.2431.2610.91039.23088.0104.6050.7800.662
Testing7.4539.05010.34924.2894.492194.9581.3311.3741.13132.44487.9675.8540.8160.619