Research Article

Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials

Table 2

Parameter configuration.

AlgorithmParameter optimization

XGBoostn estimators = 40, learning rate = 0.250, maximum depth = 4
SVMCost = 8, regression loss epsilon = 0.1, kernel type = radial basis function
RFNumber of trees = 15, limit depth of individual trees = 3
KNNNumber of neighbors = 5, metric = euclidean, weight = uniform
AdaBoostNumber of estimators = 2, learning rate = 0.1, boosting algorithm = SAMME, regression loss function = linear