Research Article

Influential Nodes in the OBOR Fossil Energy Trade Network Based on D-S Theory: Detection and Evolution Analysis

Table 1

List of fossil energy trade network studies in recent years.

Authors (year)ModelingType of networkCategoryScope and timeEvaluation indexes

Peng et al. (2021) [9]TransportationLNGWorld, 2013–2017DC, L, CC, C,
Bu et al. (2020) [10]ConsumptionGasChina, 2005–2017DC, BC, CC, LMDI
Wang and Li (2019) [11]TransportationCoalChina, 1997–2016DC, BC,L, CC,
Wang et al. (2019) [12]TradeCoalWorld, 1996–2015DC, BC, C
Xi et al. (2019) [13]TradeOilOBOR, 2009–2016DC, BC, CC
An et al. (2018) [14]TradeOilWorld, 2014–2017PMI, C
Guan and An (2017) [15]TradeOil, coal, gas, PVWorld, 2014BC, ND, RankS, LP
Zhong et al. (2017) [16]TradeCoal, oil, gasWorld, 2000–2013C, NMI
Gao et al. (2015) [17]TradeCoal, oil, gasWorld, 2002–2013DC, C, NMI
Ji et al. (2014) [18]TradeOilWorld, 2010EI, DC, CC, C, NMI
Zhong et al. (2014) [19]TradeOilWorld, 2002–2011C, NMI
An et al. (2014) [20]TradeOilWorld, 1993–2012DC, CC, C, stability

Note. DC: degree centrality, L: shortest path length, CC: closeness centrality, C: community structure, BC: betweenness centrality, NMI: normalized mutual information, LMDI: logarithmic mean Divisia index, PMI: pointwise mutual information, ND: network density, RankS: ranking score, LP: link prediction, and EI: export intensity.