Research Article

Passenger Flow Scale Prediction of Urban Rail Transit Stations Based on Multilayer Perceptron (MLP)

Table 7

Accuracy analysis of passenger flow forecast at key stations—average daily passenger flow.

Working daysNonworking days
Real valuePredictive valueAERE (%)Real valuePredictive valueAERE (%)

Wangjing stationMLP52278.8655241.352962.495.6734324.3330859.363464.9710.09
RBF42518.029760.8318.6758468.5124144.1870.34
KNN80979.5128700.6554.9053692.6719368.3356.43
Multiple linear regression78608.6226329.7650.3649270.2814945.9443.54

Xuanwu gate stationMLP48186.4352131.553945.128.1924992.0032609.657617.6530.48
RBF66599.1018412.6738.2127668.022676.0210.71
KNN46616.371570.063.2637529.4312537.4350.17
Multiple linear regression60622.1912435.7625.8137243.0712251.0749.02

Wangfujing stationMLP54176.5744590.789585.7917.6948212.3345665.492546.845.28
RBF25790.4428386.1352.4035479.3412733.0026.41
KNN38219.1015957.4729.4534991.9113220.4327.42
Multiple linear regression38979.4015197.1728.0522537.0425675.3053.25

Sanyuanqiao stationMLP102299.1473384.9028914.2428.2645860.3344970.05890.281.94
RBF65641.3136657.8335.8336802.979057.3619.75
KNN56235.1846063.9645.0336105.059755.2921.27
Multiple linear regression69438.9432860.2132.1241644.004216.339.19

Sun palace stationMLP50452.5746294.364158.218.2426563.6723033.663530.0013.29
RBF38063.8912388.6824.5630234.183670.5113.82
KNN44542.435910.1411.7124633.101930.577.27
Multiple linear regression44584.705867.8711.6326859.95296.281.12