Research Article
Passenger Flow Scale Prediction of Urban Rail Transit Stations Based on Multilayer Perceptron (MLP)
Table 7
Accuracy analysis of passenger flow forecast at key stations—average daily passenger flow.
| | Working days | Nonworking days | Real value | Predictive value | AE | RE (%) | Real value | Predictive value | AE | RE (%) |
| Wangjing station | MLP | 52278.86 | 55241.35 | 2962.49 | 5.67 | 34324.33 | 30859.36 | 3464.97 | 10.09 | RBF | 42518.02 | 9760.83 | 18.67 | 58468.51 | 24144.18 | 70.34 | KNN | 80979.51 | 28700.65 | 54.90 | 53692.67 | 19368.33 | 56.43 | Multiple linear regression | 78608.62 | 26329.76 | 50.36 | 49270.28 | 14945.94 | 43.54 |
| Xuanwu gate station | MLP | 48186.43 | 52131.55 | 3945.12 | 8.19 | 24992.00 | 32609.65 | 7617.65 | 30.48 | RBF | 66599.10 | 18412.67 | 38.21 | 27668.02 | 2676.02 | 10.71 | KNN | 46616.37 | 1570.06 | 3.26 | 37529.43 | 12537.43 | 50.17 | Multiple linear regression | 60622.19 | 12435.76 | 25.81 | 37243.07 | 12251.07 | 49.02 |
| Wangfujing station | MLP | 54176.57 | 44590.78 | 9585.79 | 17.69 | 48212.33 | 45665.49 | 2546.84 | 5.28 | RBF | 25790.44 | 28386.13 | 52.40 | 35479.34 | 12733.00 | 26.41 | KNN | 38219.10 | 15957.47 | 29.45 | 34991.91 | 13220.43 | 27.42 | Multiple linear regression | 38979.40 | 15197.17 | 28.05 | 22537.04 | 25675.30 | 53.25 |
| Sanyuanqiao station | MLP | 102299.14 | 73384.90 | 28914.24 | 28.26 | 45860.33 | 44970.05 | 890.28 | 1.94 | RBF | 65641.31 | 36657.83 | 35.83 | 36802.97 | 9057.36 | 19.75 | KNN | 56235.18 | 46063.96 | 45.03 | 36105.05 | 9755.29 | 21.27 | Multiple linear regression | 69438.94 | 32860.21 | 32.12 | 41644.00 | 4216.33 | 9.19 |
| Sun palace station | MLP | 50452.57 | 46294.36 | 4158.21 | 8.24 | 26563.67 | 23033.66 | 3530.00 | 13.29 | RBF | 38063.89 | 12388.68 | 24.56 | 30234.18 | 3670.51 | 13.82 | KNN | 44542.43 | 5910.14 | 11.71 | 24633.10 | 1930.57 | 7.27 | Multiple linear regression | 44584.70 | 5867.87 | 11.63 | 26859.95 | 296.28 | 1.12 |
|
|