Research Article

Passenger Flow Scale Prediction of Urban Rail Transit Stations Based on Multilayer Perceptron (MLP)

Table 8

Accuracy analysis of passenger flow forecast at key stations—peak hour passenger flow.

Working daysNonworking days
Real valuePredictive valueAERE (%)Real valuePredictive valueAERE (%)

Wangjing stationMLP7582.866918.11664.758.772826.002027.92798.0828.24
RBF6310.971271.8816.774209.881383.8848.97
KNN12339.294756.4362.734593.141767.1462.53
Multiple linear regression11698.954116.1054.284220.071394.0749.33

Xuanwu gate stationMLP9422.27644.661777.6218.872217.333102.19884.8539.91
RBF11541.892119.6022.502785.65568.3225.63
KNN6880.192542.1026.983386.191168.8652.71
Multiple linear regression9387.4034.890.373217.701000.3645.12

Wangfujing stationMLP6593.147660.821067.6816.194467.005054.55587.5513.15
RBF4189.842403.3036.452684.431782.5739.91
KNN4278.172314.9835.113055.431411.5731.60
Multiple linear regression6400.83192.312.922006.672460.3355.08

Sanyuanqiao stationMLP16947.299517.607429.6943.843804.674069.36264.696.96
RBF11043.975903.3234.832809.12995.5526.17
KNN8967.417979.8847.093244.86559.8114.71
Multiple linear regression10897.366049.9335.703643.60161.074.23

Sun palace stationMLP7517.577868.74351.174.672230.001960.66269.3412.08
RBF6899.90617.678.222591.98361.9816.23
KNN7129.48388.105.162141.8688.143.95
Multiple linear regression7005.64511.936.812346.11116.115.21

Bold values are the values with the smallest errors in the prediction results of the four models for each site under different scenarios.