Research Article
Passenger Flow Scale Prediction of Urban Rail Transit Stations Based on Multilayer Perceptron (MLP)
Table 8
Accuracy analysis of passenger flow forecast at key stations—peak hour passenger flow.
| | Working days | Nonworking days | Real value | Predictive value | AE | RE (%) | Real value | Predictive value | AE | RE (%) |
| Wangjing station | MLP | 7582.86 | 6918.11 | 664.75 | 8.77 | 2826.00 | 2027.92 | 798.08 | 28.24 | RBF | 6310.97 | 1271.88 | 16.77 | 4209.88 | 1383.88 | 48.97 | KNN | 12339.29 | 4756.43 | 62.73 | 4593.14 | 1767.14 | 62.53 | Multiple linear regression | 11698.95 | 4116.10 | 54.28 | 4220.07 | 1394.07 | 49.33 |
| Xuanwu gate station | MLP | 9422.2 | 7644.66 | 1777.62 | 18.87 | 2217.33 | 3102.19 | 884.85 | 39.91 | RBF | 11541.89 | 2119.60 | 22.50 | 2785.65 | 568.32 | 25.63 | KNN | 6880.19 | 2542.10 | 26.98 | 3386.19 | 1168.86 | 52.71 | Multiple linear regression | 9387.40 | 34.89 | 0.37 | 3217.70 | 1000.36 | 45.12 |
| Wangfujing station | MLP | 6593.14 | 7660.82 | 1067.68 | 16.19 | 4467.00 | 5054.55 | 587.55 | 13.15 | RBF | 4189.84 | 2403.30 | 36.45 | 2684.43 | 1782.57 | 39.91 | KNN | 4278.17 | 2314.98 | 35.11 | 3055.43 | 1411.57 | 31.60 | Multiple linear regression | 6400.83 | 192.31 | 2.92 | 2006.67 | 2460.33 | 55.08 |
| Sanyuanqiao station | MLP | 16947.29 | 9517.60 | 7429.69 | 43.84 | 3804.67 | 4069.36 | 264.69 | 6.96 | RBF | 11043.97 | 5903.32 | 34.83 | 2809.12 | 995.55 | 26.17 | KNN | 8967.41 | 7979.88 | 47.09 | 3244.86 | 559.81 | 14.71 | Multiple linear regression | 10897.36 | 6049.93 | 35.70 | 3643.60 | 161.07 | 4.23 |
| Sun palace station | MLP | 7517.57 | 7868.74 | 351.17 | 4.67 | 2230.00 | 1960.66 | 269.34 | 12.08 | RBF | 6899.90 | 617.67 | 8.22 | 2591.98 | 361.98 | 16.23 | KNN | 7129.48 | 388.10 | 5.16 | 2141.86 | 88.14 | 3.95 | Multiple linear regression | 7005.64 | 511.93 | 6.81 | 2346.11 | 116.11 | 5.21 |
|
|
Bold values are the values with the smallest errors in the prediction results of the four models for each site under different scenarios.
|