Research Article

PSO with Mixed Strategy for Global Optimization

Algorithm 2

MSPSO.
Input: fitness function , dimension n, population size μ, subpopulation size , maximum number of generation Max_Gen, MCLPSO limit value limitgp1and limitgp2, MCLPSO adjustment coefficient and , iterative parameter β, interval iteration lp.
(1)Generate an initial population consisting of individuals at random.
(2)Set lp = 10, Crk = 0, pk = 1/5.
(3)for do
(4) if
(5) for do
(6)  Perform MCLPSO to generate offsprings.
(7) end for
(8) for do
(9)   Using improved adaptive probability adjustment method to generate offsprings and update the selection probability.
(10)  end for
(11) else
(12)  for do
(13)   Using improved adaptive probability adjustment method to generate offsprings and update the selection probability.
(14)  end for
(15)  Update the best three individuals using Algorithm 1;
(16) end if
(17) Obtain the fitness value fbest of the optimal in the population
(18) if fmin > fbest then
(19)  fmin = fbest
(20)  Imin=xmin
(21) end if
(22)end for
Output: the best fitness value .