Research Article

A Static-Dynamic Hypergraph Neural Network Framework Based on Residual Learning for Stock Recommendation

Algorithm 1

Dynamic hypergraph construction.
Input: Input embedding X; Nearest neighbor parameter k
Output: Hyperedge set E; The set of vertices possessed by a hyperedge e pos(e)
Function: K-nearest neighborhood selection knn; Distance function dis; Smallest distance index selection topK
(1)for u in range (len (X)) do
(2)D = dis (X (u), X)
(3)D = sort (D)
(4)ind = topK (D, 2)-topK (D, 1)
(5)E. insert (ind)
(6)pos (ind). insert (u)
(7)end for
(8)for e in E do
(9) = knn (X[e], X, k)
(10)pos (e). insert ()
(11)end for