Research Article
A Static-Dynamic Hypergraph Neural Network Framework Based on Residual Learning for Stock Recommendation
Table 1
Ranking performance of different methods on the China’s A-share dataset when considering different numbers of N.
| Model | CSI 100 | CSI 300 | IC (↑) | Rank IC (↑) | Precision@N (↑) | IC (↑) | Rank IC (↑) | Precision@N (↑) | Top3 | Top5 | Top10 | Top30 | Top3 | Top5 | Top10 | Top30 |
| MLP | 0.071 | 0.067 | 56.53 | 56.17 | 55.49 | 53.55 | 0.082 | 0.079 | 57.21 | 57.10 | 56.75 | 55.56 | SFM | 0.081 | 0.074 | 57.79 | 56.96 | 55.92 | 53.88 | 0.102 | 0.096 | 59.84 | 58.28 | 57.89 | 56.82 | GRU | 0.103 | 0.097 | 59.97 | 58.99 | 58.37 | 55.09 | 0.113 | 0.108 | 59.95 | 59.28 | 58.59 | 57.43 | LSTM | 0.097 | 0.091 | 60.12 | 59.49 | 59.04 | 54.77 | 0.104 | 0.098 | 59.51 | 59.27 | 58.40 | 56.98 | ALSTM | 0.102 | 0.097 | 60.79 | 59.76 | 58.13 | 55.00 | 0.115 | 0.109 | 59.51 | 59.33 | 58.92 | 57.47 | Transformer | 0.089 | 0.090 | 59.62 | 59.20 | 57.94 | 54.80 | 0.106 | 0.104 | 60.76 | 60.06 | 59.48 | 57.71 | ALSTM + TRA | 0.107 | 0.102 | 60.27 | 59.09 | 57.66 | 55.16 | 0.119 | 0.112 | 60.45 | 59.52 | 59.16 | 58.24 |
| GATs | 0.096 | 0.090 | 59.17 | 58.71 | 57.48 | 54.59 | 0.111 | 0.105 | 60.49 | 59.96 | 59.02 | 57.41 | HIST | 0.120 | 0.115 | 61.87 | 60.82 | 59.38 | 56.04 | 0.131 | 0.126 | 61.60 | 61.08 | 60.51 | 58.79 |
| SD-RL | 0.124 | 0.118 | 62.86 | 62.07 | 60.05 | 56.28 | 0.131 | 0.125 | 62.39 | 61.70 | 60.84 | 58.83 |
|
|
The best result in terms of each metric is indicated in bold.
|