Research Article

A Static-Dynamic Hypergraph Neural Network Framework Based on Residual Learning for Stock Recommendation

Table 1

Ranking performance of different methods on the China’s A-share dataset when considering different numbers of N.

ModelCSI 100CSI 300
IC (↑)Rank IC (↑)Precision@N (↑)IC (↑)Rank IC (↑)Precision@N (↑)
Top3Top5Top10Top30Top3Top5Top10Top30

MLP0.0710.06756.5356.1755.4953.550.0820.07957.2157.1056.7555.56
SFM0.0810.07457.7956.9655.9253.880.1020.09659.8458.2857.8956.82
GRU0.1030.09759.9758.9958.3755.090.1130.10859.9559.2858.5957.43
LSTM0.0970.09160.1259.4959.0454.770.1040.09859.5159.2758.4056.98
ALSTM0.1020.09760.7959.7658.1355.000.1150.10959.5159.3358.9257.47
Transformer0.0890.09059.6259.2057.9454.800.1060.10460.7660.0659.4857.71
ALSTM + TRA0.1070.10260.2759.0957.6655.160.1190.11260.4559.5259.1658.24

GATs0.0960.09059.1758.7157.4854.590.1110.10560.4959.9659.0257.41
HIST0.1200.11561.8760.8259.3856.040.1310.12661.6061.0860.5158.79

SD-RL0.1240.11862.8662.0760.0556.280.1310.12562.3961.7060.8458.83

The best result in terms of each metric is indicated in bold.