Research Article
A Static-Dynamic Hypergraph Neural Network Framework Based on Residual Learning for Stock Recommendation
Table 3
The results of ablation study.
| Model | CSI 100 | CSI 300 | IC (↑) | Rank IC (↑) | Precision@N (↑) | IC (↑) | Rank IC (↑) | Precision@N (↑) | Top3 | Top5 | Top10 | Top30 | Top3 | Top5 | Top10 | Top30 |
| GRU + Attn | 0.106 | 0.100 | 60.02 | 59.31 | 58.36 | 55.25 | 0.114 | 0.108 | 60.51 | 59.72 | 58.67 | 57.52 | GRU + Attn + Sta | 0.115 | 0.108 | 60.46 | 60.30 | 58.75 | 55.49 | 0.116 | 0.111 | 60.88 | 59.79 | 58.90 | 57.62 | GRU + Attn + Sta + Dy | 0.120 | 0.113 | 60.82 | 60.99 | 59.01 | 55.78 | 0.122 | 0.117 | 61.67 | 60.89 | 60.16 | 58.13 | SD-RL | 0.124 | 0.118 | 62.86 | 62.07 | 60.05 | 56.28 | 0.131 | 0.125 | 62.39 | 61.70 | 60.84 | 58.83 |
|
|
The best result in terms of each metric is indicated in bold.
|