Abstract

By coincidence degree theory for k-set-contractive mapping, this paper establishes a new criterion for the existence of at least two positive periodic solutions for a neutral delay model of single-species population growth with harvesting. An example is given to illustrate the effectiveness of the result.

1. Introduction

In 1993, Kuang [1] proposed the following open problem (Open Problem 9.2): obtain sufficient conditions for the existence of positive periodic solutions for ๐‘๎…ž๎€บ๐‘Ž(๐‘ก)=๐‘(๐‘ก)(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘(๐‘ก)โˆ’๐‘(๐‘ก)๐‘(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘(๐‘ก)๐‘๎…ž๎€ป(๐‘กโˆ’๐œ(๐‘ก)),(1.1) where all parameters are nonnegative continuous ๐‘‡-periodic functions. Fang and Li [2] gave an answer to the above open problem. In recent years, many papers have been published on the existence of multiple positive periodic solutions for some population systems with periodic harvesting terms by using Mawhin's coincidence degree theory (see, e.g., [3โ€“7]). However, to our knowledge, few papers deal with the existence of multiple positive periodic solutions for neutral delay population models with harvesting. The main difficulty is that Mawhin's coincidence degree theory is generally not available to neutral delay models. Moreover, it is also hard to obtain a priori bounds on solutions for neutral delay models.

In this paper, we consider the following neutral delay model of single-species population growth with harvesting ๐‘๎…ž๎€บ๐‘Ž(๐‘ก)=๐‘(๐‘ก)(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘(๐‘ก)โˆ’๐‘(๐‘ก)๐‘(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘(๐‘ก)๐‘๎…ž๎€ป(๐‘กโˆ’๐œ(๐‘ก))โˆ’โ„Ž(๐‘ก),(1.2) where ๐‘Ž(๐‘ก),๐›ฝ(๐‘ก),๐‘(๐‘ก),๐œ(๐‘ก),๐‘(๐‘ก),andโ„Ž(๐‘ก) are nonnegative continuous ๐‘‡-periodic functions, and โ„Ž(๐‘ก) denotes the harvesting rate.

The purpose of this paper is to establish the existence of at least two positive periodic solutions for neutral delay model (1.2). To show the existence of solutions to the considered problems, we will use the coincidence degree theory for ๐‘˜-set contractions [8โ€“10] and a priori bounds on solutions.

2. Preliminaries

We now briefly state the part of coincidence degree theory for ๐‘˜-set-contractive mapping (see [8โ€“10]).

Let ๐‘ be a Banach space. For a bounded subset ๐ดโŠ‚๐‘, let ฮ“๐‘(๐ด) denote the (Kuratowski) measure of noncompactness defined by ฮ“๐‘๎ƒฏ(๐ด)=inf๐›ฟ>0โˆถโˆƒa๏ฌnitenumberofsubsets๐ด๐‘–๎šโŠ‚๐ด,๐ด=๐‘–๐ด๐‘–๎€ท๐ด,diam๐‘–๎€ธ๎ƒฐโ‰ค๐›ฟ.(2.1) Here, diam (๐ด๐‘–) denotes the maximum distance between the points in the set ๐ด๐‘–.

Let ๐‘‹ and ๐‘ be Banach spaces with norms โ€–โ‹…โ€–๐‘ฅ and โ€–โ‹…โ€–๐‘ง respectively, and ฮฉ a bounded open subset of ๐‘‹ยท A continuous and bounded mapping ๐‘โˆถฮฉโ†’๐‘ is called ๐‘˜-set-contractive if, for any bounded ๐ดโŠ‚ฮฉ, we have ฮ“๐‘(๐‘(๐ด))โ‰ค๐‘˜ฮ“๐‘‹(๐ด).(2.2)

Also, for a continuous and bounded map ๐‘‡โˆถ๐‘‹โ†’๐‘Œ, we define ๐‘™๎€ฝ(๐‘‡)=sup๐‘Ÿโ‰ฅ0โˆถโˆ€boundedsubset๐ดโŠ‚๐‘‹,๐‘Ÿฮ“๐‘‹(๐ด)โ‰คฮ“๐‘Œ๎€พ(๐‘‡(๐ด)).(2.3)

Let ๐ฟโˆถdom๐ฟโŠ‚๐‘‹โ†’๐‘ be a linear mapping and ๐‘โˆถ๐‘‹โ†’๐‘ a continuous mapping. The mapping ๐ฟ will be called a Fredholm mapping of index zero if dimKer๐ฟ=codim๐ผ๐‘š๐ฟ<+โˆž and ๐ผ๐‘š๐ฟ is closed in ๐‘. If ๐ฟ is a Fredholm mapping of index zero, then there exist continuous projectors ๐‘ƒโˆถ๐‘‹โ†’๐‘‹ and ๐‘„โˆถ๐‘โ†’๐‘ such that ๐ผ๐‘š๐‘ƒ=Ker๐ฟ,๐ผ๐‘š๐ฟ=Ker๐‘„=๐ผ๐‘š(๐ผโˆ’๐‘„). If we define ๐ฟ๐‘ƒโˆถdom๐ฟโˆฉKer๐‘ƒโ†’๐ผ๐‘š๐ฟ as the restriction ๐ฟ|dom๐ฟโˆฉKer๐‘ƒ of ๐ฟ to dom๐ฟโˆฉKer๐‘ƒ, then ๐ฟ๐‘ƒ is invertible. We denote the inverse of that map by ๐พ๐‘ƒ. If ฮฉ is an open bounded subset of ๐‘‹, the mapping ๐‘ will be called ๐ฟ-๐‘˜-set-contractive on ฮฉ if ๐‘„๐‘(ฮฉ) is bounded and ๐พ๐‘ƒ(๐ผโˆ’๐‘„)๐‘โˆถฮฉโ†’๐‘‹ is ๐‘˜-set contractive. Since ๐ผ๐‘š๐‘„ is isomorphic to Ker๐ฟ, there exists isomorphism ๐ฝโˆถ๐ผ๐‘š๐‘„โ†’Ker๐ฟ.

Lemma 2.1 (see[8], Proposition XI.2.). Let ๐ฟ be a closed Fredholm mapping of index zero, and let ๐‘โˆถฮฉโ†’๐‘ be ๐‘˜โ€ฒ-set contractive with 0โ‰ค๐‘˜โ€ฒ<๐‘™(๐ฟ).(2.4) Then ๐‘โˆถฮฉโ†’๐‘ is a ๐ฟ-๐‘˜-set contraction with constant ๐‘˜=๐‘˜โ€ฒ/๐‘™(๐ฟ)<1.

The following lemma (see [8], page 213) will play a key role in this paper.

Lemma 2.2. Let ๐ฟ be a Fredholm mapping of index zero, and let ๐‘โˆถฮฉโ†’๐‘ be ๐ฟ-๐‘˜-set contractive on ฮฉ,๐‘˜<1. Suppose that(i)๐ฟ๐‘ฅโ‰ ๐œ†๐‘๐‘ฅ for every ๐‘ฅโˆˆdom๐ฟโˆฉ๐œ•ฮฉ and every ๐œ†โˆˆ(0,1);(ii)๐‘„๐‘๐‘ฅโ‰ 0 for every ๐‘ฅโˆˆ๐œ•ฮฉโˆฉKer๐ฟ;(iii)Brouwer degree deg๐ต(๐ฝ๐‘„๐‘,ฮฉโˆฉKer๐ฟ,0)โ‰ 0.Then ๐ฟ๐‘ฅ=๐‘๐‘ฅ has at least one solution in dom๐ฟโˆฉฮฉ.

3. Main Result

Let ๐ถ0๐‘‡ denote the linear space of real-valued continuous ๐‘‡-periodic functions on ๐‘…. The linear space ๐ถ0๐‘‡ is a Banach space with the usual norm for ๐‘ฅโˆˆ๐ถ0๐‘‡ given by |๐‘ฅ|0=max๐‘กโˆˆ๐‘…|๐‘ฅ(๐‘ก)|. Let ๐ถ1๐‘‡ denote the linear space of ๐‘‡-periodic functions with the first-order continuous derivative. ๐ถ1๐‘‡ is a Banach space with norm |๐‘ฅ|1=max{|๐‘ฅ|0,|๐‘ฅ๎…ž|0}.

Let ๐‘‹=๐ถ1๐‘‡ and ๐‘Œ=๐ถ0๐‘‡, and let ๐ฟโˆถ๐‘‹โ†’๐‘Œ be given by ๐ฟ๐‘ฅ=๐‘‘๐‘ฅ/๐‘‘๐‘ก. Since |๐ฟ๐‘ฅ|0=|๐‘ฅ๎…ž|0โ‰ค|๐‘ฅ|1, we see that ๐ฟ is a bounded (with bound =1) linear map.

Since we are concerning with positive solutions of (1.2), we make the change of variables as follows: ๐‘(๐‘ก)=๐‘’๐‘ฅ(๐‘ก).(3.1) Then (1.2) is rewritten as ๐‘ฅ๎…ž(๐‘ก)=๐‘Ž(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)โˆ’๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘(๐‘ก)๐‘ฅ๎…ž(๐‘กโˆ’๐œ(๐‘ก))๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก).(3.2) Next define a nonlinear map ๐‘โˆถ๐‘‹โ†’๐‘Œ by ๐‘(๐‘ฅ)(๐‘ก)=๐‘Ž(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)โˆ’๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘(๐‘ก)๐‘ฅ๎…ž(๐‘กโˆ’๐œ(๐‘ก))๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก).(3.3) Now, if ๐ฟ๐‘ฅ=๐‘๐‘ฅ for some ๐‘ฅโˆˆ๐‘‹, then the problem (3.2) has a periodic solution ๐‘ฅ(๐‘ก).

In the following, we denote that 1๐‘”=๐‘‡๎€œ๐‘‡0๐‘”(๐‘ก)๐‘‘๐‘ก,๐‘”๐‘™=min[]๐‘กโˆˆ0,๐‘‡๐‘”(๐‘ก),๐‘”๐‘ข=max[]๐‘กโˆˆ0,๐‘‡๐‘”(๐‘ก),(3.4) where ๐‘”(๐‘ก) is a continuous nonnegative ๐‘‡-periodic solution.

From now on, we always assume that(๐ป1)๐‘Ž(๐‘ก)โˆˆ๐ถ(๐‘…,(0,+โˆž)),๐›ฝ(๐‘ก),๐‘(๐‘ก)โˆˆ๐ถ(๐‘…,๐‘…+),๐‘(๐‘ก),๐œ(๐‘ก)โˆˆ๐ถ1(๐‘…,๐‘…+),๐œ๎…ž<1; (๐ป2)๐‘๎…ž0(๐‘ก)<๐‘(๐‘ก), where ๐‘0(๐‘ก)=๐‘(๐‘ก)/(1โˆ’๐œ๎…ž(๐‘ก));(๐ป3)๐‘Ž๐‘™>๐‘๐‘ข๐‘€0โˆš+2[๐›ฝ๐‘ข+๐‘๐‘ข]โ„Ž๐‘ข,๐‘๐‘ข๐‘’๐‘…1<1, where ๐‘€0=๐‘Ž๐‘ข๐‘’๐‘…1+(๐›ฝ๐‘ข+๐‘๐‘ข)๐‘’2๐‘…1+โ„Ž๐‘ข1โˆ’๐‘๐‘ข๐‘’๐‘…1,๐‘…1=ln๐‘Ž๐›ฝ๐‘™+๐‘๐‘ข0๐‘Ž๎€ท๐‘โˆ’๐‘๎…ž0๎€ธ๐‘™+2๐‘Ž๐‘‡.(3.5)

For further convenience, we introduce 6 positive numbers as below ๐‘™ยฑ=๐‘Ž๐‘ข+๐‘๐‘ข๐‘€0ยฑ๎”๎€บ๐‘Ž๐‘ข+๐‘๐‘ข๐‘€0๎€ป2โˆ’4๐›ฝ๐‘™โ„Ž๐‘™2๐›ฝ๐‘™,๐‘ฅยฑ=๎‚™๐‘Žยฑ๎€ท๐‘Ž๎€ธ2๎‚ƒโˆ’4๐›ฝ+๐‘๎‚„โ„Ž2๎‚ƒ๐›ฝ+๐‘๎‚„,๐‘ขยฑ=๐‘Ž๐‘™โˆ’๐‘๐‘ข๐‘€0ยฑ๎”๎€บ๐‘Ž๐‘™โˆ’๐‘๐‘ข๐‘€0๎€ป2๎€บ๐›ฝโˆ’4๐‘ข+๐‘๐‘ข๎€ปโ„Ž๐‘ข2๎€บ๐›ฝ๐‘ข+๐‘๐‘ข๎€ป.(3.6) Set the following: ๐‘”โˆ’(๐‘ฅ,๐‘ฆ,๐‘ง)=๐‘ฆโˆ’โˆš๐‘ฆ2โˆ’4๐‘ฅ๐‘ง=2๐‘ฅ2๐‘ง๐‘ฆ+โˆš๐‘ฆ2๐‘”โˆ’4๐‘ฅ๐‘ง(๐‘ฅ>0,๐‘ฆ>0,๐‘ง>0),+(๐‘ฅ,๐‘ฆ,๐‘ง)=๐‘ฆ+โˆš๐‘ฆ2โˆ’4๐‘ฅ๐‘ง2๐‘ฅ(๐‘ฅ>0,๐‘ฆ>0,๐‘ง>0),(3.7) where ๐‘ฆ2>4๐‘ฅ๐‘ง.

By the monotonicity of the functions ๐‘”โˆ’(๐‘ฅ,๐‘ฆ,๐‘ง),๐‘”+(๐‘ฅ,๐‘ฆ,๐‘ง) on ๐‘ฅ,๐‘ฆ,๐‘ง, it is not difficult to see that ๐‘™โˆ’<๐‘ฅโˆ’<๐‘ขโˆ’<๐‘ข+<๐‘ฅ+<๐‘™+.(3.8)

Theorem 3.1. In addition to (๐ป1), (๐ป2),โ€‰ โ€‰(๐ป3), assume further that the following condition holds:(๐ป4)๐‘˜โˆ—=๐‘๐‘ขmax{๐‘’๐‘…1,๐‘™+}<1. Then (1.2) has at least two positive ๐‘‡-periodic solutions.

Before proving Theorem 3.1, we need the following lemmas.

Lemma 3.2 (see [11]). ๐ฟ is a Fredholm map of index 0 and satisfies ๐‘™(๐ฟ)โ‰ฅ1.(3.9)

Lemma 3.3. Under the assumptions of Theorem 3.1, let โŽงโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽฉ||||||||||ฮฉ=๐‘ฅโˆˆ๐‘‹max[]๐‘กโˆˆ0,๐‘‡๎€ท๐‘ฅ(๐‘ก)โˆˆln(๐‘™โˆ’๎€ท๎€ฝ๐‘’โˆ’๐›ฟ),lnmax๐‘…1,๐‘™+๎€พ,+๐›ฟ๎€ธ๎€ธmin[]๐‘กโˆˆ0,๐‘‡๎€ท๐‘ฅ(๐‘ก)โˆˆln(๐‘™โˆ’๎€ท๎€ฝ๐‘’โˆ’๐›ฟ),lnmax๐‘…1,๐‘™+๎€พ,+๐›ฟ๎€ธ๎€ธmax[]๐‘กโˆˆ0,๐‘‡||๐‘ฅ๎…ž(||๐‘ก)<๐‘€1.โŽซโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽญ,(3.10) where ๐‘€1=๐‘Ž๐‘ข+(๐›ฝ๐‘ข+๐‘๐‘ข)๐‘’๐‘…1+๎€ทโ„Ž๐‘ข/๐‘™โˆ’๎€ธ1โˆ’๐‘๐‘ข๐‘’๐‘…1,(3.11) and 0<๐›ฟ<๐‘™โˆ’ such that ๐‘˜0=๐‘๐‘ข๎€บ๎€ฝ๐‘’max๐‘…1,๐‘™+๎€พ๎€ป+๐›ฟ<1.(3.12) Then ๐‘โˆถฮฉโ†’๐‘Œ is a ๐‘˜0-set-contractive map.

Proof. The proof is similar to that of lemmaโ€‰โ€‰3.3 in [9], but for the sake of completeness we give the proof here. Let ๐ดโŠ‚ฮฉ be a bounded subset and let ๐œ‚=ฮ“๐‘‹(๐ด). Then for any ๐œ€>0, there is a finite family of subsets {๐ด๐‘–} with โ‹ƒ๐ด=๐‘–๐ด๐‘– and diam1(๐ด๐‘–)โ‰ค๐œ‚+๐œ€.
Set the following: ๐‘”๎€ท๐‘ก,๐‘ฅ,๐‘ฅ1,๐‘ฅ2๎€ธ=๐‘Ž(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘’๐‘ฅโˆ’๐‘(๐‘ก)๐‘’๐‘ฅ1โˆ’๐‘(๐‘ก)๐‘ฅ2๐‘’๐‘ฅ1โˆ’โ„Ž(๐‘ก)๐‘’๐‘ฅ.(3.13) Now it follows from the fact that ๐‘”(๐‘ก,๐‘ฅ,๐‘ฅ1,๐‘ฅ2) is uniformly continuous on any compact subset of ๐‘…ร—๐‘…3, and from the fact ๐ด and ๐ด๐‘– are precompact in ๐ถ0๐‘‡ with norm |โ‹…|0, that there is a finite family of subsets {๐ด๐‘–๐‘—} of ๐ด๐‘– such that ๐ด๐‘–=โ‹ƒ๐‘—๐ด๐‘–๐‘— with ||๐‘”๎€ท๐‘ก,๐‘ฅ(๐‘ก),๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก)),๐‘ข๎…ž๎€ธ๎€ท(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘”๐‘ก,๐‘ข(๐‘ก),๐‘ข(๐‘กโˆ’๐œ(๐‘ก)),๐‘ข๎…ž๎€ธ||(๐‘กโˆ’๐œ(๐‘ก))<๐œ€(3.14) for any ๐‘ฅ,๐‘ขโˆˆ๐ด๐‘–๐‘—. Therefore, for ๐‘ฅ,๐‘ขโˆˆ๐ด๐‘–๐‘— we have ||||๐‘๐‘ฅโˆ’๐‘๐‘ข0=sup0โ‰ค๐‘กโ‰ค๐‘‡||๐‘”๎€ท๐‘ก,๐‘ฅ(๐‘ก),๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก)),๐‘ฅ๎…ž๎€ธ๎€ท(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘”๐‘ก,๐‘ข(๐‘ก),๐‘ข(๐‘กโˆ’๐œ(๐‘ก)),๐‘ข๎…ž๎€ธ||(๐‘กโˆ’๐œ(๐‘ก))โ‰คsup0โ‰ค๐‘กโ‰ค๐‘‡||๐‘”๎€ท๐‘ก,๐‘ฅ(๐‘ก),๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก)),๐‘ฅ๎…ž๎€ธ๎€ท(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘”๐‘ก,๐‘ฅ(๐‘ก),๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก)),๐‘ข๎…ž๎€ธ||(๐‘กโˆ’๐œ(๐‘ก))+sup0โ‰ค๐‘กโ‰ค๐‘‡||๐‘”๎€ท๐‘ก,๐‘ฅ(๐‘ก),๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก)),๐‘ข๎…ž๎€ธ๎€ท(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘”๐‘ก,๐‘ข(๐‘ก),๐‘ข(๐‘กโˆ’๐œ(๐‘ก)),๐‘ข๎…ž๎€ธ||(๐‘กโˆ’๐œ(๐‘ก))โ‰ค๐‘๐‘ข๎€บ๎€ฝ๐‘’max๐‘…1,๐‘™+๎€พ๎€ป+๐›ฟsup0โ‰ค๐‘กโ‰ค๐‘‡||๐‘ฅ๎…ž(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘ข๎…ž(||๐‘กโˆ’๐œ(๐‘ก))+๐œ€โ‰ค๐‘˜0||๐‘ฅ๎…žโˆ’๐‘ข๎…ž||0+๐œ€โ‰ค๐‘˜0๎€ท๐‘˜๐œ‚+0๎€ธ+1๐œ€.(3.15) That is ฮ“๐‘Œ(๐‘(๐ด))โ‰ค๐‘˜0ฮ“๐‘‹(๐ด). The proof is complete.

Lemma 3.4. If the assumptions of Theorem 3.1 hold, then every solution ๐‘ฅโˆˆ๐‘‹ of the problem ๐ฟ๐‘ฅ=๐œ†๐‘๐‘ฅ,๐œ†โˆˆ(0,1)(3.16) satisfies max[]๐‘กโˆˆ0,๐‘‡๐‘ฅ[(๐‘ก)โˆˆln๐‘™โˆ’,ln๐‘ขโˆ’]โˆช๎€บln๐‘ข+,ln๐‘™+๎€ป,min[]๐‘กโˆˆ0,๐‘‡๎€บ๐‘ฅ(๐‘ก)โˆˆln๐‘™โˆ’,ln๐‘™+๎€ป,max[]๐‘กโˆˆ0,๐‘‡||๐‘ฅ๎…ž||(๐‘ก)<๐‘€1.(3.17)

Proof. Let ๐ฟ๐‘ฅ=๐œ†๐‘๐‘ฅ for ๐‘ฅโˆˆ๐‘‹, that is, ๐‘ฅ๎…ž๎‚ธ(๐‘ก)=๐œ†๐‘Ž(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)โˆ’๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘(๐‘ก)๐‘ฅ๎…ž(๐‘กโˆ’๐œ(๐‘ก))๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)๎‚น,๐œ†โˆˆ(0,1).(3.18) Therefore, we have ๐‘ฅ๎…ž๎‚ธ(๐‘ก)=๐œ†๐‘Ž(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)โˆ’๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘0๎€บ๐‘’(๐‘ก)๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))๎€ป๎…žโˆ’โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)๎‚น,๐œ†โˆˆ(0,1),(3.19) where ๐‘0(๐‘ก)=๐‘(๐‘ก)/(1โˆ’๐œ๎…ž(๐‘ก)).
By (3.19), we have ๎€บ๐‘ฅ(๐‘ก)+๐œ†๐‘0(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))๎€ป๎…ž๎‚ธ=๐œ†๐‘Ž(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)โˆ’๎€ท๐‘(๐‘ก)โˆ’๐‘๎…ž0๎€ธ๐‘’(๐‘ก)๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)๎‚น.(3.20) Integrating this identity leads to ๎€œ๐‘‡0๎‚ธ๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)+๎€ท๐‘(๐‘ก)โˆ’๐‘๎…ž0๎€ธ๐‘’(๐‘ก)๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))+โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)๎‚น๎€œ๐‘‘๐‘ก=๐‘‡0๐‘Ž(๐‘ก)๐‘‘๐‘ก.(3.21) From (3.20),(3.21), we have ๎€œ๐‘‡0|||๎€บ๐‘ฅ(๐‘ก)+๐œ†๐‘0(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))๎€ป๎…ž|||๎‚ต๎€œ๐‘‘๐‘กโ‰ค๐œ†๐‘‡0๎€œ๐‘Ž(๐‘ก)๐‘‘๐‘ก+๐‘‡0๎‚ธ๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)+๎€ท๐‘(๐‘ก)โˆ’๐‘๎…ž0๎€ธ๐‘’(๐‘ก)๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))+โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)๎‚น๎‚ถ๎€œ๐‘‘๐‘ก<2๐‘‡0๐‘Ž(๐‘ก)๐‘‘๐‘ก=2๐‘‡๐‘Ž.(3.22) By (3.21), we have ๎€œ๐‘‡0๎€œ๐‘Ž(๐‘ก)๐‘‘๐‘กโ‰ฅ๐‘‡0๎€บ๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)+๎€ท๐‘(๐‘ก)โˆ’๐‘๎…ž0๎€ธ๐‘’(๐‘ก)๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))๎€ป๐‘‘๐‘ก.(3.23) It follows that ๎€œ๐‘‡0๐‘Ž(๐‘ก)๐‘‘๐‘กโ‰ฅ๐‘‡๐›ฝ๐‘™๐‘’๐‘ฅ(๐œ‰)๎€ท+๐‘‡๐‘โˆ’๐‘๎…ž0๎€ธ๐‘™๐‘’๐‘ฅ(๐œ‰โˆ’๐œ(๐œ‰)),(3.24) for some ๐œ‰โˆˆ[0,๐‘‡].
Therefore, we have ๐‘ฅ(๐œ‰)โ‰คln๐‘Ž๐›ฝ๐‘™,๐‘’๐‘ฅ(๐œ‰โˆ’๐œ(๐œ‰))โ‰ค๐‘Ž๎€ท๐‘โˆ’๐‘๎…ž0๎€ธ๐‘™.(3.25) From (3.22) and (3.25), we see that ๐‘ฅ(๐‘ก)+๐œ†๐‘0(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โ‰ค๐‘ฅ(๐œ‰)+๐œ†๐‘0(๐œ‰)๐‘’๐‘ฅ(๐œ‰โˆ’๐œ(๐œ‰))+๎€œ๐‘‡0|||๎€บ๐‘ฅ(๐‘ก)+๐œ†๐‘0(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))๎€ป๎…ž|||๐‘‘๐‘ก<ln๐‘Ž๐›ฝ๐‘™+๐‘๐‘ข0๐‘Ž๎€ท๐‘โˆ’๐‘๎…ž0๎€ธ๐‘™+2๐‘Ž๐‘‡=๐‘…1.(3.26) Hence, we have ๐‘ฅ(๐‘ก)<๐‘…1.
Let ๐‘ =๐‘กโˆ’๐œ(๐‘ก). It follows from (3.19) that ๐‘ฅ๎…ž๎‚ธ(๐‘ก)=๐œ†๐‘Ž(๐‘ก)โˆ’๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)โˆ’๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))โˆ’๐‘(๐‘ก)๐‘‘๐‘’๐‘ฅ(๐‘ )โˆ’๐‘‘๐‘ โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)๎‚น,๐œ†โˆˆ(0,1).(3.27) Then from (3.27) and the inequality ๐‘ฅ(๐‘ก)<๐‘…1, we obtain that |||๎€บ๐‘’๐‘ฅ(๐‘ก)๎€ป๎…ž|||๎ƒฌโ‰ค๐œ†๐‘Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)+๐›ฝ(๐‘ก)๐‘’2๐‘ฅ(๐‘ก)+๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘ก)+๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))+๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘ก)||||๐‘‘๐‘’๐‘ฅ(๐‘ )||||๎ƒญ๐‘‘๐‘ +โ„Ž(๐‘ก)<๐‘Ž๐‘ข๐‘’๐‘…1+(๐›ฝ๐‘ข+๐‘๐‘ข)๐‘’2๐‘…1+๐‘๐‘ข๐‘’๐‘…1||||๐‘‘๐‘’๐‘ฅ(๐‘ )||||๐‘‘๐‘ +โ„Ž๐‘ข,โˆ€๐‘กโˆˆ๐‘….(3.28) So that |||๎€บ๐‘’๐‘ฅ(๐‘ก)๎€ป๎…ž|||<๐‘Ž๐‘ข๐‘’๐‘…1+๎€บ๐›ฝ๐‘ข+๐‘๐‘ข๎€ป๐‘’2๐‘…1+๐‘๐‘ข๐‘’๐‘…1|||๎€บ๐‘’๐‘ฅ๎€ป๎…ž|||0+โ„Ž๐‘ข,โˆ€๐‘กโˆˆ๐‘….(3.29) Since ๐‘๐‘ข๐‘’๐‘…1<1, we have |||๎€บ๐‘’๐‘ฅ๎€ป๎…ž|||0<๐‘Ž๐‘ข๐‘’๐‘…1+(๐›ฝ๐‘ข+๐‘๐‘ข)๐‘’2๐‘…1+โ„Ž๐‘ข1โˆ’๐‘๐‘ข๐‘’๐‘…1=๐‘€0.(3.30) Choose ๐‘ก๐‘€,๐‘ก๐‘šโˆˆ[0,๐‘‡], such that ๐‘ฅ๎€ท๐‘ก๐‘€๎€ธ=max[]๐‘กโˆˆ0,๐‘‡๐‘ฅ๎€ท๐‘ก(๐‘ก),๐‘ฅ๐‘š๎€ธ=min[]๐‘กโˆˆ0,๐‘‡๐‘ฅ(๐‘ก).(3.31) Then, it is clear that ๐‘ฅ๎…ž๎€ท๐‘ก๐‘€๎€ธ=0,๐‘ฅ๎…ž๎€ท๐‘ก๐‘š๎€ธ=0.(3.32) From this and (3.27), we obtain that ๐‘Ž๎€ท๐‘ก๐‘€๎€ธ๐‘’๐‘ฅ(๐‘ก๐‘€)๎€ท๐‘ก=๐›ฝ๐‘€๎€ธ๐‘’2๐‘ฅ(๐‘ก๐‘€)๎€ท๐‘ก+๐‘๐‘€๎€ธ๐‘’๐‘ฅ(๐‘ก๐‘€)+๐‘ฅ(๐‘ก๐‘€โˆ’๐œ(๐‘ก๐‘€))๎€ท๐‘ก+๐‘๐‘€๎€ธ๐‘’๐‘ฅ(๐‘ก๐‘€)๎‚ธ๐‘‘๐‘’๐‘ฅ(๐‘ )๎‚น๐‘‘๐‘ ๐‘ =๐‘ก๐‘€โˆ’๐œ(๐‘ก๐‘€)๎€ท๐‘ก+โ„Ž๐‘€๎€ธ,๐‘Ž๎€ท๐‘ก(3.33)๐‘š๎€ธ๐‘’๐‘ฅ(๐‘ก๐‘š)๎€ท๐‘ก=๐›ฝ๐‘š๎€ธ๐‘’2๐‘ฅ(๐‘ก๐‘š)๎€ท๐‘ก+๐‘๐‘š๎€ธ๐‘’๐‘ฅ(๐‘ก๐‘š)+๐‘ฅ(๐‘ก๐‘šโˆ’๐œ(๐‘ก๐‘š))๎€ท๐‘ก+๐‘๐‘š๎€ธ๐‘’๐‘ฅ(๐‘ก๐‘š)๎‚ธ๐‘‘๐‘’๐‘ฅ(๐‘ )๎‚น๐‘‘๐‘ ๐‘ =๐‘ก๐‘šโˆ’๐œ(๐‘ก๐‘š)๎€ท๐‘ก+โ„Ž๐‘š๎€ธ.(3.34) It follows from (3.33) that ๎€บ๐›ฝ๐‘ข+๐‘๐‘ข๎€ป๐‘’2๐‘ฅ(๐‘ก๐‘€)โˆ’๎€บ๐‘Ž๐‘™โˆ’๐‘๐‘ข๐‘€0๎€ป๐‘’๐‘ฅ(๐‘ก๐‘€)+โ„Ž๐‘ขโ‰ฅ0.(3.35) By (๐ป3), we have ๐‘ฅ๎€ท๐‘ก๐‘€๎€ธโ‰คln๐‘ขโˆ’๎€ท๐‘กor๐‘ฅ๐‘€๎€ธโ‰ฅln๐‘ข+.(3.36) It also follows from (3.33) that ๐›ฝ๐‘™๐‘’2๐‘ฅ(๐‘ก๐‘€)โˆ’๎€บ๐‘Ž๐‘ข+๐‘๐‘ข๐‘€0๎€ป๐‘’๐‘ฅ(๐‘ก๐‘€)+โ„Ž๐‘™โ‰ค0.(3.37) By (๐ป3), we have ln๐‘™โˆ’๎€ท๐‘กโ‰ค๐‘ฅ๐‘€๎€ธโ‰คln๐‘™+.(3.38) Similarly, it follows from (3.34) that ๐›ฝ๐‘™๐‘’2๐‘ฅ(๐‘ก๐‘š)โˆ’๎€บ๐‘Ž๐‘ข+๐‘๐‘ข๐‘€0๎€ป๐‘’๐‘ฅ(๐‘ก๐‘š)+โ„Ž๐‘™โ‰ค0.(3.39) By (๐ป3), we have ln๐‘™โˆ’๎€ท๐‘กโ‰ค๐‘ฅ๐‘š๎€ธโ‰คln๐‘™+.(3.40) Hence, it follows from (3.36), (3.38), and (3.40) that ๐‘ฅ๎€ท๐‘ก๐‘€๎€ธโˆˆ[ln๐‘™โˆ’,ln๐‘ขโˆ’]โˆช๎€บln๐‘ข+,ln๐‘™+๎€ป,๐‘ฅ๎€ท๐‘ก๐‘š๎€ธโˆˆ๎€บln๐‘™โˆ’,ln๐‘™+๎€ป.(3.41) From the above inequality and (3.18), we obtain that ||๐‘ฅ๎…ž||๎‚ธ(๐‘ก)โ‰ค๐œ†๐‘Ž(๐‘ก)+๐›ฝ(๐‘ก)๐‘’๐‘ฅ(๐‘ก)+๐‘(๐‘ก)๐‘’๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))||๐‘ฅ+๐‘(๐‘ก)๎…ž||๐‘’(๐‘กโˆ’๐œ(๐‘ก))๐‘ฅ(๐‘กโˆ’๐œ(๐‘ก))+โ„Ž(๐‘ก)๐‘’๐‘ฅ(๐‘ก)๎‚น<๐‘Ž๐‘ข+(๐›ฝ๐‘ข+๐‘๐‘ข)๐‘’๐‘…1+๐‘๐‘ข๐‘’๐‘…1||๐‘ฅ๎…ž||0+โ„Ž๐‘ข๐‘’๐‘ฅ(๐‘ก๐‘š).(3.42) So that ||||๐‘ฅโ€ฒ0<๐‘Ž๐‘ข+๎€บ๐›ฝ๐‘ข+๐‘๐‘ข๎€ป๐‘’๐‘…1+๐‘๐‘ข๐‘’๐‘…1||||๐‘ฅโ€ฒ0+โ„Ž๐‘ข๐‘™โˆ’.(3.43) Since ๐‘๐‘ข๐‘’๐‘…1<1, we have ||||๐‘ฅโ€ฒ0<๐‘Ž๐‘ข+(๐›ฝ๐‘ข+๐‘๐‘ข)๐‘’๐‘…1+โ„Ž๐‘ข/๐‘™โˆ’1โˆ’๐‘๐‘ข๐‘’๐‘…1=๐‘€1.(3.44) The proof is complete.

The Proof of Theorem 3.1
Clearly, ๐‘™ยฑ,๐‘ขยฑ are independent of ๐œ†. Now, let us consider ๐‘„๐‘(๐‘ฅ) with ๐‘ฅโˆˆ๐‘…. Note that ๐‘„๐‘(๐‘ฅ)=๎‚ƒ๐‘Žโˆ’๐›ฝ+๐‘๎‚„๐‘’๐‘ฅโˆ’โ„Ž๐‘’๐‘ฅ.(3.45) It is easy to see that ๐‘„๐‘(๐‘ฅ)=0 has two distinct solutions: ฬƒ๐‘ข1=ln๐‘ฅโˆ’,ฬƒ๐‘ข2=ln๐‘ฅ+.(3.46) By (3.8), one can take ๐‘ฃโˆ’,๐‘ฃ+>0 such that ๐‘ขโˆ’<๐‘ฃโˆ’<๐‘ฃ+<๐‘ข+.(3.47) Let ฮฉ1=โŽงโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽฉ||||||||||๐‘ฅโˆˆ๐‘‹max[]๐‘กโˆˆ0,๐‘‡๐‘ฅ(๐‘ก)โˆˆ(ln(๐‘™โˆ’โˆ’๐›ฟ),ln๐‘ฃโˆ’),min[]๐‘กโˆˆ0,๐‘‡๎€ท๐‘ฅ(๐‘ก)โˆˆln(๐‘™โˆ’๎€ท๐‘™โˆ’๐›ฟ),ln+,+๐›ฟ๎€ธ๎€ธmax[]๐‘กโˆˆ0,๐‘‡||๐‘ฅ๎…ž(||๐‘ก)<๐‘€1.โŽซโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽญ,ฮฉ2=โŽงโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽฉ||||||||||||||๐‘ฅโˆˆ๐‘‹max[]๐‘กโˆˆ0,๐‘‡๎€ท๐‘ฅ(๐‘ก)โˆˆln๐‘ฃ+๎€ท๐‘™,ln+,+๐›ฟ๎€ธ๎€ธmin[]๐‘กโˆˆ0,๐‘‡๎€ท๐‘ฅ(๐‘ก)โˆˆln(๐‘™โˆ’๎€ท๐‘™โˆ’๐›ฟ),ln+,+๐›ฟ๎€ธ๎€ธmax[]๐‘กโˆˆ0,๐‘‡||๐‘ฅ๎…ž||(๐‘ก)<๐‘€1.โŽซโŽชโŽชโŽชโŽชโŽชโŽฌโŽชโŽชโŽชโŽชโŽชโŽญ.(3.48) Then ฮฉ1andฮฉ2 are bounded open subsets of ๐‘‹. Clearly, ฮฉ๐‘–โŠ‚ฮฉ(๐‘–=1,2). It follows from Lemma 3.3 that ๐‘โˆถฮฉ๐‘–โ†’๐‘Œ is a ๐‘˜0-set-contractive map (๐‘–=1,2). Therefore, it follows from Lemmas 2.1 and 3.2 that ๐‘โˆถฮฉ๐‘–โ†’๐‘ is ๐ฟ-๐‘˜-set contractive on ฮฉ๐‘–(๐‘–=1,2) with ๐‘˜=๐‘˜0/๐‘™(๐ฟ)โ‰ค๐‘˜0<1.
It follows from (3.8) and (3.46) that ฬƒ๐‘ข๐‘–โˆˆฮฉ๐‘–(๐‘–=1,2). From (3.8), (3.47) and Lemma 3.4, it is easy to see that ฮฉ1โˆฉฮฉ2=โˆ… and ฮฉ๐‘– satisfies (i) in Lemma 2.2 for ๐‘–=1,2. Moreover, ๐‘„๐‘(๐‘ฅ)โ‰ 0 for ๐‘ฅโˆˆ๐œ•ฮฉ๐‘–โˆฉKer๐ฟ(๐‘–=1,2).
A direct computation gives the following: ๎€ฝdeg๐ฝ๐‘„๐‘,ฮฉ1๎€พ๎€ฝโˆฉKer๐ฟ,0=1,deg๐ฝ๐‘„๐‘,ฮฉ2๎€พโˆฉKer๐ฟ,0=โˆ’1.(3.49) Here, ๐ฝ is taken as the identity mapping since ๐ผ๐‘š๐‘„=Ker๐ฟ. So far we have proved that ฮฉ๐‘– satisfies all the assumptions in Lemma 2.2(๐‘–=1,2). Hence, (3.2) has at least two ๐‘‡-periodic solutions: ๐‘ฅโˆ—๐‘–(๐‘ก) and ๐‘ฅโˆ—๐‘–โˆˆdom๐ฟโˆฉฮฉ๐‘–(๐‘–=1,2). Obviously, ๐‘ฅโˆ—๐‘–(๐‘–=1,2) are different. Let ๐‘โˆ—๐‘–(๐‘ก)=๐‘’๐‘ฅโˆ—๐‘–(๐‘ก)(๐‘–=1,2). Then ๐‘โˆ—๐‘–(๐‘ก)(๐‘–=1,2) are two different positive ๐‘‡-periodic solutions of (1.2). The proof is complete.

Example 3.5. Take the following: ๐‘๐œ(๐‘ก)=1+0.5sin๐‘ก,๐‘Ž(๐‘ก)=2โˆ’sin๐‘ก,๐›ฝ(๐‘ก)=๐‘(๐‘ก)=1+0.5sin๐‘ก,(๐‘ก)=๐œ–(1โˆ’0.5cos๐‘ก),โ„Ž(๐‘ก)=๐œ–(2+sin๐‘ก),(3.50) where the constant ๐œ–>0.
Clearly, we have ๐‘Ž๐‘™=1,๐›ฝ๐‘™=0.5,๐›ฝ๐‘ข=๐‘๐‘ข=1.5,๐‘๐‘ข=1.5๐œ–,โ„Ž๐‘ข=3๐œ–,๐‘0(๐‘ก)=๐œ–.(3.51) Therefore, we have ๐‘๎…ž0(๐‘ก)<๐‘(๐‘ก). Moreover, it is easy to see that ๐‘…1,๐‘€0,and๐‘™+ are bounded with respect to ๐œ–. Hence, for some sufficiently small ๐œ–>0, we have ๐‘Ž๐‘™>๐‘๐‘ข๐‘€0๎”+2๎€บ๐›ฝ๐‘ข+๐‘๐‘ข๎€ปโ„Ž๐‘ข,๐‘˜โˆ—=๐‘๐‘ข๎€ฝ๐‘’max๐‘…1,๐‘™+๎€พ๎€ฝ๐‘’=1.5๐œ–max๐‘…1,๐‘™+๎€พ<1.(3.52) In this case, all necessary conditions of Theorem 3.1 hold. By Theorem 3.1, (1.2) has at least two positive 2๐œ‹-periodic solutions.

Acknowledgment

This paper is supported by the National Natural Science Foundation of China (Grant no. 10971085).