Research Article

A Pseudo-Parallel Genetic Algorithm Integrating Simulated Annealing for Stochastic Location-Inventory-Routing Problem with Consideration of Returns in E-Commerce

Table 8

Optimal objective function values of two algorithms (yuan).

Instance nameAlgorithmMeanStandard deviationCoefficient of variationSignificance test
value value (Sig. 2-tailed)

Perl
183 – 12 × 2
PPGASA27274.153072.700.1127−15.710.000
GA59644.0020373.950.3416

Gaskell
67 – 22 × 5
PPGASA176597.1251842.110.2936−2.0690.040
GA193606.4063820.200.3296

Gaskell
67 – 36 × 5
PPGASA1532353.00240454.910.1569−24.2680.000
GA3266300.00672809.810.2060

Perl
183 – 55 × 15
PPGASA4368430.00336908.310.0771−3.8770.000
GA4571132.00399811.550.0874

Christofides
69 − 75 × 10
PPGASA5653803.00481169.530.0851−2.1130.036
GA58256800.00655839.900.0113

Perl
183 – 85 × 7
PPGASA6095438.00219212.140.0360−3.3880.001
GA6221775.00301680.880.0485

Christofides
69 – 100 × 10
PPGASA6848350.00617689.910.0902−3.3910.001
GA7179759.00757338.000.1055