Research Article
Optimizing Biomedical Ontology Alignment through a Compact Multiobjective Particle Swarm Optimization Algorithm Driven by Knee Solution
Algorithm 3
Compact multiobjective particle swarm optimization algorithm driven by knee solution.
| Input: maximum generation , crossover rate , step length for updating | | Output: knee solution | (1) | Initialization | (2) | initialize generation ; | (3) | initialize , and by setting all the elements inside as ; | (4) | initialize three local best individuals , and ; | (5) | generate individuals through , and ; | (6) | ; | (7) | initialize the knee solution (or global best individual) ; | (8) | Evolving Process | (9) | while do | (10) | Updating | (11) | generate an individual through ; | (12) | | (13) | ; | (14) | ; | (15) | ; | (16) | if then | (17) | = ; | (18) | end if | (19) | Updating | (20) | generate an individual through ; | (21) | = ; | (22) | = ; | (23) | | (24) | ; | (25) | if winner = = then | (26) | = ; | (27) | end if | (28) | Updating | (29) | generate an individual through ; | (30) | = ; | (31) | = ; | (32) | | (33) | ; | (34) | if then | (35) | = ; | (36) | end if | (37) | Updating | (38) | generate 2 individuals through , and , respectively, | (39) | ; | (40) | determine current generation’s knee solution ; | (41) | ; | (42) | if then | (43) | = ; | (44) | end if | (45) | ; | (46) | end while | (47) | return ; |
|