Research Article
Utility Optimization of Federated Learning with Differential Privacy
| | Input: Dataset , initial , maxRound, , number of client chosen , , learning rate , batch size , clipping threshold , , , noise scale adjusting , adjusting threshold , | | | Output: Global model weight | | (1) | | | (2) | | | (3) | | | (4) | whiledo | | (5) | = Client choose()//2 | | (6) | Broadcast() | | (7) | fordo | | (8) | //Algorithm 3 | | (9) | Upload() | | (10) | end | | (11) | // | | (12) | ifthen | | (13) | //Algorithm 4 | | (14) | end | | (15) | | | (16) | end | | (17) | return |
|