Research Article
Utility Optimization of Federated Learning with Differential Privacy
| Input: Dataset , initial , maxRound, , number of client chosen , , learning rate , batch size , clipping threshold , , , noise scale adjusting , adjusting threshold , | | Output: Global model weight | (1) | | (2) | | (3) | | (4) | whiledo | (5) | = Client choose()//2 | (6) | Broadcast() | (7) | fordo | (8) | //Algorithm 3 | (9) | Upload() | (10) | end | (11) | // | (12) | ifthen | (13) | //Algorithm 4 | (14) | end | (15) | | (16) | end | (17) | return |
|