Research Article

Research on Monitoring Methods for the Appropriate Rice Harvest Period Based on Multispectral Remote Sensing

Table 4

Regression test results of single-band spectral reflectance and physiological indexes of rice.

Prediction methodVarietySpectral bandMoisture contentThousand-grain weight
Determination coefficient (R2)Root mean square error (RMSE)Determination coefficient (R2)Root mean square error (RMSE)

BP neural networkSouth Japonica 465500.400.240.420.95
6600.360.250.780.88
7350.650.230.840.84
7900.490.240.770.88
South Japonica 50555500.690.200.800.57
6600.330.230.470.66
7350.650.200.870.51
7900.880.190.650.64

SVMSouth Japonica 465500.380.390.361.63
6600.280.390.351.57
7350.440.350.331.43
7900.540.280.591.30
South Japonica 50555500.430.390.631.13
6600.400.220.421.10
7350.530.330.780.88
7900.680.330.730.85

Decision treeSouth Japonica 465500.980.350.973.30
6600.800.360.903.67
7350.840.360.973.76
7900.910.350.903.72
South Japonica 50555500.980.350.912.61
6600.800.360.792.66
7350.840.360.912.72
7900.910.350.942.61