Research Article

Research on Monitoring Topping Time of Cotton Based on AdaBoost+Decision Tree

Table 4

The regression of the combinations band and the cotton of plant height, buds, and fruiting branches with decision tree, random forests, and AdaBoost + decision tree.

Input bandFitting indexMethodFitting result
R2RMSEP

730 + 790 nmCotton plant heightDecision tree0.900.91
Random forests0.900.89
AdaBoost + decision tree0.900.86
Number of budsDecision tree0.890.30
Random forests0.880.94
AdaBoost + decision tree0.910.95
Number of fruiting branchesDecision tree0.900.13
Random forests0.900.79
AdaBoost + decision tree0.950.99

550 + 730+790 nmCotton plant heightDecision tree0.910.91
Random forests0.880.51
AdaBoost + decision tree0.960.40
Number of flower budsDecision tree0.910.98
Random forests0.810.68
AdaBoost + decision tree0.840.49
Number of fruiting branchesDecision tree0.910.75
Random forests0.860.93
AdaBoost + decision tree0.970.54

Full band spectraCotton plant heightDecision tree0.890.87
Random forests0.890.88
AdaBoost + decision tree0.930.23
Number of budsDecision tree0.890.38
Random forests0.880.92
AdaBoost + decision tree0.900.97
Number of fruiting branchesDecision tree0.890.96
Random forests0.900.97
AdaBoost + decision tree0.950.52