Research Article
Port Logistics Function Evaluation Model Based on Entropy Weight TOPSIS Method
(1) | function [s, w] = shang (x, ind) | (2) | %sReturns the score of each line (sample), Returns the weight of each column. | (3) | [n, m] = size(x); % n Samples, m Indicators | (4) | Xx = guiyi (x, 1, 0.002, 0.996); | (5) | %%Under the calculation of the j th index, the proportion of the i th sample in the index p (.) | (6) | for i = 1:n | (7) | for j = 1:m | (8) | p(.J) = X (ij)/sum (X(ij)); | (9) | end | (10) | end | (11) | %%Calculate the entropy value e(j) of the jth index | (12) | k = 1/log (n); | (13) | e = ones (1, m); | (14) | for j = 1:m | (15) | e() = −ksum(p(:j).: o(:j)))) | (16) | end | (17) | d = ones (1, m)-e; %Compute information entropy redundancy. | (18) | = d./sum(d); %Find the weight . | (19) | s = 100″”X”; %Seek comprehensive score | (20) | The specific results are as follows: |
|