Research Article

Machine Learning with Variable Sampling Rate for Traffic Prediction in 6G MEC IoT

Table 1

Related works performing prediction of different research objects and by means of different techniques.

[Ref]Research objectFine or coarseDatasetSimulatorTechniques

[9]Telcom networkCoarse (15 min)GEANTWIDENot mentionedARIMA
SVR
LSTM
RCLSTM
SR-based
[10]Telcom user traffic and locationCoarse (15 min)GENATNot mentionedARIMA
SVR
LSTM
RCLSTM
FFNN
[11]Telcom. NetworkCoarseOperator dataPythonARIMA
FFNN
LSTM
[12]Mobile APPFineMIRAGE-2019Not mentionedHMM
RFR
[13]Mobile APPFineMIRAGE-2019Not mentionedLR
K-NNR
RFR
MC
CNN
LSTM
GRU
[14]Mobile 6G networkCoarse (5 min)Locally obtainedEdge μ-boxes, jupyter notebookLSTM-based encoder and decoder
[15]University campus datacenterFineEDU1 datasetPython, kerasCNN
RF
[16]SDN controller (ONOS)FinePing ARQ messageNot mentionedDNN
SF
LDA
[17]InternetFineDNS trafficPython, TensorFlowSVR
BPNN
LSTM
[18]InternetFineUser dataMATLABGRU
RNN