Research Article

Research on Social Governance of Network Public Opinion: An Evolutionary Game Model

Table 3

The condition of evolutionary stability of equilibrium points.

Equilibrium pointsCase 1Case 2Case 3Case 4
λ1, λ2, λ3Stabilityλ1, λ2, λ3Stabilityλ1, λ2, λ3Stabilityλ1, λ2, λ3Stability

E1 (0, 0, 0)+, +, +Unstable+, +, −Unstable+, \, +Unstable+, \, −Unstable
E2 (1, 0, 0)−, +, +Unstable−, +, \Unstable−, \, +Unstable−, \, Uncertain
E3 (0, 1, 0)\, −, +Unstable\, −, \Uncertain\, \, +Unstable\, \, \Uncertain
E4 (1, 1, 0)\, −, +Unstable\, −, \Uncertain\, \, +Unstable\, \, \Uncertain
E5 (0, 0, 1)+, +, −Unstable+, +, +Unstable+, −, −Unstable+, −, +Unstable
E6 (0, 1, 1)+, −, −Unstable+, −, \Unstable+, +, −Unstable+, +, \Unstable
E7 (1, 0, 1)−, +, −Unstable−, +, \Unstable−, −, −ESS−, −, \Uncertain
E8 (1, 1, 1)−, −, −ESS−, −, \Uncertain−, +, −Unstable−, +, \Unstable

Note: “\” indicates that the sign of the eigenvalue is uncertain.